
 

NON-LINEAR FRICTIONAL SLIDING CONTACT ANALYSIS USING THE STEP 
BOUNDARY METHOD WITH EXACT GEOMETRY  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By 
 

JOHN DEWS-FLICK 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
A THESIS PRESENTED TO THE GRADUATE SCHOOL 

OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT 
OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN 

AEROSPACE ENGINEERING 
 

UNIVERSITY OF FLORIDA 
 

2022 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2022 John Dews-Flick 

 

 
 
 
 
 
 

 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedicated to my mom Denisé, and my grandparents, Sharon and John Dews for their 
never-ending support 

 
 

 



 

4 

ACKNOWLEDGMENTS 

 I would like to express unwavering gratitude to my research adviser, Dr. Ashok 

Kumar, who taught me my fundamentals as a student and guided me in this research as 

a Graduate student. His dedication and time commitment were paramount in completing 

this thesis. This work has greatly enriched my master’s education and opened more 

paths for my future. I also express gratitude to Dr. Bhavani Sankar for being a member 

of my thesis committee. 



 

5 

TABLE OF CONTENTS 
 
 page 

ACKNOWLEDGMENTS .................................................................................................. 4 

LIST OF TABLES ............................................................................................................ 8 

LIST OF FIGURES .......................................................................................................... 9 

LIST OF ABBREVIATIONS ........................................................................................... 13 

1. INTRODUCTION .................................................................................................... 16 

2. TRADITIONAL CONTACT ANALYSIS ................................................................... 19 

2.1. Contact Condition .......................................................................................... 19 
2.2. Penalty Method ............................................................................................. 21 
2.3. Lagrangian Multiplier Method ........................................................................ 23 
2.4. Hertzian Contact ........................................................................................... 24 
2.5. Inclusion of Friction ....................................................................................... 26 
2.6. Contact Analysis Available in Contemporary FEA Software.......................... 28 

3. THE IMMERSED BOUNDARY METHOD ............................................................... 31 

3.1. Fixed Essential Boundary Condition ............................................................. 33 
3.2. Sliding Essential Boundary Condition ........................................................... 35 
3.3. Volume Integration ........................................................................................ 37 
3.4. IBFEM Solution Structure .............................................................................. 38 

4. REPRESENTING EXACT GEOMETRY ................................................................. 43 

4.1. Traditional Representation of Geometry ....................................................... 43 
4.2. Projecting onto Exact Geometry .................................................................... 44 

4.2.1. Line and Plane .............................................................................. 45 
4.2.2. Circles and Spheres ...................................................................... 46 
4.2.3. Ellipse ............................................................................................ 47 
4.2.4. Cylinder ......................................................................................... 49 
4.2.5. Cone .............................................................................................. 50 
4.2.6. Torus ............................................................................................. 52 
4.2.7. Verifying Projection Methods ......................................................... 54 
4.2.8. General Curves & Surfaces ........................................................... 54 
4.2.9. Application to FEM ........................................................................ 55 

5. MODELING CONTACT WITHIN IBFEM ................................................................. 57 

5.1. Contact Solution Structure ............................................................................ 58 
5.2. Contact Area Representation ........................................................................ 60 



 

6 

5.3. Non-Linear Automatic Solution ...................................................................... 61 
5.4. Frictional Contact .......................................................................................... 64 

5.4.1. Tied Formulation............................................................................ 65 
5.4.2. Sliding Formulation ........................................................................ 66 

5.5. Contact Width Growth ................................................................................... 66 
5.5.1. Enforcing No Penetration .............................................................. 68 
5.5.2. Enforcing No Tensile Stress .......................................................... 69 
5.5.3. Incrementing the Contact Width .................................................... 69 
5.5.4. Determining the Width Increment .................................................. 70 

6. RESULTS ............................................................................................................... 72 

6.1. Effect of Projected Geometry on an Ellipse in Contact .................................. 72 
6.1.1. Comparison of Contact Width ........................................................ 73 
6.1.2. Comparison of Contact Pressure .................................................. 74 
6.1.3. Comparison of Sub Surface Von Mises Stress .............................. 75 
6.1.4. Displacement results ..................................................................... 76 

6.2. Mesh Independent Convergence of Contact Width ....................................... 78 
6.2.1. Comparison of Half-Width for Differing Loads ............................... 78 
6.2.2. Error In Contact Width Across Differing Meshes ........................... 79 

6.3. Frictionless Contact ....................................................................................... 80 
6.3.1. Contact Width Comparison ............................................................ 81 
6.3.2. Displacement Results .................................................................... 82 
6.3.3. Von Mises’ Stress Field ................................................................. 83 

6.4. Partial-Slip: Cylinder on Flat .......................................................................... 84 
6.4.1. Contact Width and Ratio Comparison ........................................... 84 
6.4.2. Contact Region Shear Stress ........................................................ 85 
6.4.3. Contact Region Normal Stress ...................................................... 86 
6.4.4. Von Mises Results ......................................................................... 86 

6.5. Partial-Slip: Cylinder on Cylinder ................................................................... 88 
6.5.1. Contact Width and Ratio Comparison ........................................... 89 
6.5.2. Contact Region Normal Stress ...................................................... 90 
6.5.3. Stress Fields .................................................................................. 90 
6.5.4. Displacement results ..................................................................... 93 

6.6. Partial-Slip: Cylinder on Concave .................................................................. 94 
6.6.1. Contact Width and Ratio Comparison ........................................... 95 
6.6.2. Contact Region Shear Stress ........................................................ 96 
6.6.3. Contact Region Normal Stress ...................................................... 97 
6.6.4. Stress Fields .................................................................................. 97 
6.6.5. Displacement results ................................................................... 100 

6.7. Frictionless Sliding: Cylinder on Wedge ...................................................... 101 
6.7.1. Contact Width and Transmitted Force Comparison ..................... 103 
6.7.2. Stress Fields ................................................................................ 103 
6.7.3. Displacement results ................................................................... 105 

7. CONCLUSION ...................................................................................................... 107 



 

7 

7.1. Conclusion .................................................................................................. 107 
7.2. Future Scope ............................................................................................... 108 

LIST OF REFERENCES ............................................................................................. 110 

BIOGRAPHICAL SKETCH .......................................................................................... 112 

 
 
  



 

8 

LIST OF TABLES 

Table  page 
 
Table 6-1.  Contact Half-Width comparison for Example 1. ........................................... 74 

Table 6-2.  Contact half-width and ratio comparison for Example 4. ............................. 85 

Table 6-3.  Contact half-width and ratio comparison for Example 5 Cylinder-on-
Cylinder contact. ................................................................................................. 89 

Table 6-4.  Contact half-width and ratio comparison for Example 6. ............................. 96 

 



 

9 

LIST OF FIGURES 

Figure  page 
 
Figure 2-1. General contact problem between bodies in 2D ......................................... 19 

Figure 2-2. Differing Hertzian contact possibilities within 2D for point-contact. 𝑁 and 
𝑄 represent the normal and tangential force transferred through the contact 
region. ................................................................................................................ 24 

Figure 2-3. Analytical shear force distribution through the contact width for various 
contact force ratios normalized by the friction coefficient µ. ............................... 27 

Figure 3-1. Examples of IBFEM meshes. a) 2D frame structure immersed within 
square elements. b) 3D propeller immersed within cubic elements. ................... 31 

Figure 3-2. Step boundary region of a part. 𝜙 is the signed distance function which 

gives the distance of any point from the surface. 𝜙 = 0 on the surface. ............. 33 

Figure 3-3. Part with boundaries not aligned with the global coordinate system. The 
local surface normal 𝑛 is shown. ........................................................................ 35 

Figure 4-1. Line segment approximation of an ellipse. With error in the surface 
normal and the position shown ........................................................................... 43 

Figure 4-2. Exact surface projection algorithm for a plane ............................................ 46 

Figure 4-3. Exact surface projection algorithm for circles and spheres ......................... 47 

Figure 4-4. Exact surface projection algorithm for an ellipse ......................................... 49 

Figure 4-5. Exact surface projection algorithm for a cylinder ......................................... 50 

Figure 4-6. Exact surface projection algorithm for a cone ............................................. 51 

Figure 4-7. Exact surface projection algorithm for a torus. ............................................ 53 

Figure 5-1. Underlying grids for each part in a contact problem. Which are 
connected by the overlapping elements known as contact elements. The 
contact point in this example is shown by the black dot. .................................... 57 

Figure 5-2. Compatibility condition for contact. Consider two points that come into 
contact due originally separated by a displacement ∆𝑖. ...................................... 58 

Figure 5-3. Sliding and tied region of a contact area. Measured by half-widths 𝑎 and 
𝑐 which represent the entire region and tied region. A example cord length is 
shown measuring from the contact point to an arbitrary point on the 
boundary. ........................................................................................................... 60 



 

10 

Figure 5-4. Determination if a point on Part 1 is penetrating Part 2. .............................. 68 

Figure 6-1. Boundary conditions for ellipse on plane contact. ....................................... 72 

Figure 6-2. Comparison of the Von Mises stress plot between (a) projected and (b) 
non-project results. The only difference between simulations and results is 
the addition of the ellipse projection algorithm. ................................................... 73 

Figure 6-3. Contact pressure distribution using both the IBFEM method with 
projection and without projection compared to the analytical solution. ............... 75 

Figure 6-4. Subsurface Von Mises stress along the vertical axis from the contact 
point. ................................................................................................................... 76 

Figure 6-5. Projected result displacement magnitude. .................................................. 77 

Figure 6-6. Non-projected result displacement magnitude. ........................................... 77 

Figure 6-7. Boundary conditions for mesh independent convergence analysis. The 
bottom part is fixed at the bottom, while the top part has a specified 
displacement. ..................................................................................................... 78 

Figure 6-8. Contact half-width computed during eight different analyses while using 
the same mesh density (25 contact elements). Only the normal load 
boundary condition was varied between analyses. This is compared to the 
analytical contact half-width from (2-23) ............................................................. 79 

Figure 6-9. Error in contact half-width compared across increasing mesh density. 
The same boundary conditions were used for all analyses with only the 
background mesh was modified ......................................................................... 80 

Figure 6-10. Comparison of mesh densities: (a) Course mesh containing ~5 contact 
elements (b) Fine mesh containing ~30 contact elements .................................. 80 

Figure 6-11. Cylinder-on-Cylinder boundary conditions. Both vertical and horizontal 
displacements are specified. The contact is frictionless with 𝜇 = 0. ................... 81 

Figure 6-12. The components of displacement for frictionless contact (a) the 
displacement in the Y direction and (b) the displacement in the x-direction. ...... 82 

Figure 6-13. Von Mises Stress for Frictionless contact. This result is expected to 
match the Hertzian normal force only Von Mises contour plot. ........................... 83 

Figure 6-14. Cylinder-on-Flat plane boundary conditions. Both vertical and 
horizontal displacement is applied along the top boundary. ............................... 84 

Figure 6-15. Shear Stress through the contact half-width compared to the analytical 
result. Only half of the geometries' contact width is plotted. ............................... 85 



 

11 

Figure 6-16. The Normal Stress plotted through the contact region. ............................. 86 

Figure 6-17. Von Mises’ Stress field for cylinder-on-flat contact under partial slip. (a) 
Full result view (b) Zoomed, contact region result view ...................................... 87 

Figure 6-18. "Stresses produced by a contact with a combined normal and 
tangential load made visible by polarization optics” courtesy of Valentin 
Popov, who released this image into the public domain [17]. ............................. 88 

Figure 6-19. Boundary conditions for Cylinder-on-Cylinder contact under partial-slip. .. 89 

Figure 6-20. Normal stress through the contact region for Cylinder-on-Cylinder 
contact ................................................................................................................ 90 

Figure 6-21. Von Mises’ Stress for Cylinder-on-Cylinder contact with normal and 
tangential load .................................................................................................... 91 

Figure 6-22. 𝜎𝑦𝑦 stress field for Cylinder-on-Cylinder contact with normal and 
tangential load. ................................................................................................... 92 

Figure 6-23. 𝜎𝑥𝑦 stress field for Cylinder-on-Cylinder contact with normal and 
tangential load. ................................................................................................... 92 

Figure 6-24. 𝑢𝑥 displacement field for cylinder-on-cylinder point contact. ..................... 93 

Figure 6-25. 𝑢𝑦 displacement field for cylinder-on-cylinder point contact ...................... 94 

Figure 6-26. Boundary conditions for Cylinder-on-Concave. Both vertical and 
horizontal displacements are applied to the top boundary. ................................. 95 

Figure 6-27. Shear Stress through the contact half-width compared to the analytical 
result for Cylinder-on-Concave contact. Only half of the geometries' contact 
width is plotted. ................................................................................................... 97 

Figure 6-28. Normal Stress plotted through the contact region for Cylinder-on-
Concave contact ................................................................................................. 97 

Figure 6-29. Von Mises’ Stress field for Cylinder-on-Concave contact ......................... 98 

Figure 6-30. 𝜎𝑦𝑦 stress field for Cylinder-on-Concave contact ..................................... 99 

Figure 6-31. 𝜎𝑥𝑦 stress field for Cylinder-on-Concave contact. ..................................... 99 

Figure 6-32. 𝑢𝑥 displacement field for cylinder-on-concave point contact. .................. 100 

Figure 6-33. 𝑢𝑦 displacement field for cylinder-on-concave point contact ................... 101 

Figure 6-34. Boundary conditions for Cylinder-on-wedge. Only a vertical 
displacement on the top boundary is specified. ................................................ 102 



 

12 

Figure 6-35. Free body diagram of the forces applied to the top cylinder. ................... 102 

Figure 6-36. Von Misses Stress field for cylinder-on-wedge ....................................... 104 

Figure 6-37. (a) 𝜎𝑦𝑦 stress field (b) 𝜎𝑥𝑥 stress field for cylinder-on-wedge contact .... 104 

Figure 6-38. 𝑢 magnitude displacement field for cylinder-on-wedge point contact. ..... 105 

Figure 6-39. (a) 𝑢𝑦 displacement field (b) 𝑢𝑥 displacement field for cylinder-on-
wedge. .............................................................................................................. 106 

 



 

13 

LIST OF ABBREVIATIONS 

IBFEM Immersed Boundary Finite Element Method 

FEM Finite Element Method 

FEA Finite Element Analysis 

CAD Computer Aided Design 

DOF Degree of Freedom 

RHS Right Hand Side.  (Reference to the RHS of an equation) 

LHS Left Hand Side.  (Reference to the LHS of an equation) 

 

 



 

14 

Abstract of Thesis Presented to the Graduate School 
of the University of Florida in Partial Fulfillment of the 
Requirements for the Degree of Master of Science 

 
NON-LINEAR FRICTIONAL SLIDING CONTACT ANALYSIS USING THE STEP 

BOUNDARY METHOD WITH EXACT GEOMETRY  

By 

John Dews-Flick 
 

August 2022 
 

Chair: Dr. Ashok V. Kumar 
Committee: Dr. Bhavani V. Sankar 
Major: Aerospace Engineering 
 

Contact is an important phenomenon to capture within solid mechanics, many 

methods have been proposed and are in use for traditional methods using conforming 

meshes. However, these meshes increase complexity, and can lead to distorted 

elements compared to the uniform structured meshes used within the immersed 

boundary method finite element method (IBFEM). This present work extends current 

contact methods within IBFEM to include a new contact representation based on the 

scaler half-width value of the contact region. The tied formulation is extended to 

including sliding contact between two bodies. This sliding contact formulation can be 

used to represent frictionless contact problems. This method can also be applied to 

partial-slip problems, these problems are static; however, a region of relative slip 

develops within the outer most contact region. In the partial-slip case this region can be 

identified by knowing the ratio of the load transferred through the contact region. The 

need for exact projection of geometry was identified and implemented for differing 

surface primitives, this allows the exact projection of points onto the surface and 

determination of the exact normal. Multiple Hertzian and Hertzian-like problems are 
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considered and compared to the analytical solutions regarding the contact width found, 

the pressure distribution through the contact region, and the shear stress through the 

contact region.  
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CHAPTER 1 
1. INTRODUCTION 

 Contact analysis has four main objectives; determining whether contact is 

present, isolating the contact region, calculating the magnitude of the forces and 

stresses within the contact region, and predicting relative motion between the surfaces. 

Generally, since the contact forces and displacements are not known beforehand, this 

requires a non-linear solution to develop the contact region while satisfying equilibrium 

[1].  

Contact has been well studied when conforming meshes are considered; thus, 

these are considered traditional FEA methods. Generally, these methods use very high 

mesh densities within the contact region. The nodes of the meshes conform to the 

underlying boundary of the geometry—these often distorted elements lead to both 

geometric inaccuracy and inaccuracy in the stiffness of the elements. To overcome 

these inaccuracies, a non-conforming mesh can be used where the nodes of elements 

are not necessarily on the boundary of the part. Here, the geometry is immersed into a 

rectangular or cuboid structured mesh, leading to higher accuracy in the underlying 

approximation. This method is known as the immersed boundary method, further 

introduced later in Chapter 3 [2]. 

 Contact analysis within IBFEM has been explored in previous work. Burla et al. 

developed a multi-grid solution structure to handle composite materials [3] which was 

extended by Tupsakhare, who demonstrated a linear contact formulation using the 

Hertzian analytical solution to pre-determine the contact region [4].  More recent work 

by Nittala expands this method to non-linear analysis, where the contact region is no 

longer known a priori [5]. This present work extends these by implementing a new 
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method for contact region representation and growth, the addition of sliding frictionless 

and frictional partial-slip contact, and the exact projection of geometry onto surface 

primitives. The main goals of this thesis are: 

• Represent the surfaces of geometric primitive exactly using the underlying 

geometric definition of the parts. 

• Implement a new contact half-width-based solution structure for 

representing the contact region and its growth. 

• Develop a new contact formulation that can handle sliding in local degrees 

of freedom 

• Develop a solution structure based on contact half-width and the tied ratio 

to handle partial-slip frictional contact problems 

A general outline of each chapter in this thesis follows. 

Chapter 2 briefly introduces contact theory within traditional FEA methods and 

coverage of the Hertzian theory of contact, which is used as an analytical basis for 

comparison later in this thesis. Contact formulations within traditional FEA theory and 

commercial applications are also presented. 

Chapter 3 reviews the immersed boundary finite element method (IBFEM). 

Focusing on the application of essential boundary conditions using the step boundary 

method. The weak form for solution structure (without contact) for IBFEM is also given. 

Chapter 4 presents the projection algorithms developed for the most common 

geometric surface primitives, which allow for exact projection within IBFEM. A 

discussion is given on projection for generalized surfaces via minimization. 
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Chapter 5 explains the contact solution structure within the IBFEM framework for 

both tied and sliding contact regions. The contact half-width-based solution structure is 

described along with a method for contact growth. An algorithm for computing the 

contact force is presented, which is used for determining the partial-sliding ratio. A 

review of the automatic non-linear solution method used for obtaining a solution is also 

presented. 

Chapter 6 is a presentation of contact examples. One example is focused on the 

effect and the need to project to the exact geometry. Another example  studies the 

mesh dependence of the contact half-width computed; presented to validate the 

reliability of the solution structure. A frictionless example is given to validate sliding 

contact. Then multiple Hertzian-like partial-slip problems of various geometry are 

presented and compared to the analytical solutions presented in Chapter 2. 

Chapter 7 contains an extended discussion of the examples, concluding remarks, 

limiting factors, and the future scope. 
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CHAPTER 2 
2. TRADITIONAL CONTACT ANALYSIS 

2.1. Contact Condition 

In traditional finite elements, contact problems are generally divided into 

identifying contact, enforcing equilibrium, then identifying relative motion in the contact 

region. This generally must be done iteratively as contact is highly non-linear. For 

example, consider the general 2D contact case shown in Figure 2-1; if a displacement is 

applied to the secondary body, initially, there will be no resistance, and rigid body 

motion will occur until the point of contact. This will produce a discontinuous jump in the 

force-displacement graph.  

 
Figure 2-1. General contact problem between bodies in 2D 

 
Generally, for contact problems, one of the two bodies is denoted as the primary 

surface and the other the secondary. This distinction is somewhat arbitrary and arises 

from the need that only one surface needs to be searched for penetration from the other 

surface. For contact to occur between two points, it must be along the normal between 
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the two surfaces, representing the shortest distance between the two given points. The 

closest point between the two bodies shown in Figure 2-1 can be found as it will satisfy: 

 
(�⃑�2 − �⃑�1)

𝑇�̂�𝑡 = 0 
 

(2-1) 

Which is to say, a point on the primary body �⃑�1 is closest to point �⃑�2 on the secondary 

body if the vector between them is entirely along the normal direction [1]. If two points 

satisfy Equation (2-1), they are not necessarily in contact rather, they are the location of 

closest contact and thus potential contact. The gap between the two points 𝑔𝑛 can be 

determined as: 

 
𝑔𝑛 = (�⃑�2 − �⃑�1)

𝑇�̂�𝑛 
 

(2-2) 

Note the normal gap 𝑔𝑛 is a scaler, but its sign indicates if there is penetration. If �⃑�2 

penetrates �⃑�1 then the gap is negative. Thus, a no penetration condition can be written 

as [1]: 

�⃗� 𝑇�̂�𝑛 + 𝑔𝑛 ≥ 0 (2-3) 

 
In the present work, only non-adhesive contact is considered, which means the 

bodies will not stick together in any form. This implies no tension can be transmitted 

through the contact region, only compressive forces. This net force is known as the 

normal contact force or contact pressure 𝑃𝑛. Note that though 𝑃𝑛 results in a 

compressive force but is defined as positive. This results in the following conditions: 

𝑃𝑛 ≥ 0 (2-4) 

𝑃𝑛[(�⃑�2 − �⃑�1)
𝑇�̂�𝑛 + 𝑔𝑛] = 0 (2-5) 



 

21 

Equation (2-5) combines Equations (2-3)(2-4) to create a consistency condition that will 

always be zero. This is done by considering 𝑃𝑛 is zero if there is a gap and that 

(�⃑�2 − �⃑�1)
𝑇�̂�𝑛 + 𝑔𝑛 is zero if the two points are in contact. 

The complete solution can be formulated by extending the principle of virtual 

work for elastic-static problems given as: 

∫ {𝛿𝜀}𝑇{𝜎} 𝑑𝑉
ℬ⏟          
Internal Force

= ∫ {𝛿𝑢}𝑇{𝑡 }𝑑𝑆
𝜕ℬ⏟          
Surface Traction

+∫ {𝛿𝑢}𝑇{𝑏} 𝑑𝑉
ℬ⏟          
Body Forces

 

 

(2-6) 

Here {𝛿𝜀} and {𝛿𝑢} are the virtual strains and displacements. Equation (2-5) will be 

applied to introduce contemporary methods of contact analysis using the penalty 

method, augmented Lagrangian methods, and as the basis for the IBFEM contact 

formulation using the step boundary method. 

2.2. Penalty Method 

The appropriately named penalty method adds a penalty to the potential energy 

to enforce the non-penetration condition. Traditionally, this is done by adding a penalty 

based on the gap 𝑔𝑛 between the contact points only when penetration occurs or 𝑔𝑛 <

0, the total penalty 𝑃 is defined using the Macaulay bracket 〈𝑥〉 as [6]: 

〈𝑥〉 = {
0 𝑥 ≤ 0
𝑥 𝑥 ≥ 0

 (2-7) 

 

𝑃 =
𝑃𝐶
2
∫ 〈−𝑔𝑛〉

2 𝑑𝑆
𝜕ℬ

 
(2-8) 

 
Were 𝑃𝑁 is the penalty parameter for normal contact. This penalty can be included in 

the variational form in Equation (2-6) as: 

𝛿𝑃 = 𝑃𝐶∫ 𝛿𝑔𝑛〈−𝑔𝑛〉 𝑑𝑆
𝜕ℬ

= 𝑃𝐶∫ {𝛿𝑢}𝑇〈−𝑔𝑛〉{�̂�𝑛} 𝑑𝑆
𝜕ℬ

 
(2-9) 
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∫ {𝛿𝜀}𝑇{𝜎} 𝑑𝑉
ℬ⏟          
Internal Force

+ 𝑃𝐶∫ {𝛿𝑢}𝑇〈−𝑔𝑛〉{�̂�𝑛}
𝜕ℬ⏟              
Contact Penalty

= ∫ {𝛿𝑢}𝑇{𝑡 }𝑑𝑆
𝜕ℬ⏟          
Surface Traction

+∫ {𝛿𝑢}𝑇{𝑏} 𝑑𝑉
ℬ⏟          
Body Forces

 

 

(2-10) 

 
As can be seen, the contact penalty term 𝛿𝑃(𝑢𝑖, 𝛿𝑢𝑖), is non-linear, depending on the 

deformation; thus, Equation (2-10) cannot be solved as a system of linear equations. 

Instead, a non-linear incremented solution must be used where the total displacement is 

instead incremented by Δ𝑢𝑖, thus allowing for the re-computation of 𝑔𝑛. To accomplish 

this, 𝛿𝑃 must be linearized as: 

Δ𝑔𝑛 = {Δ𝑥⃗⃗ ⃗⃗⃑2 − Δ𝑥⃗⃗ ⃗⃗⃑1}
𝑇�̂�𝑛 = {Δu}

𝑇�̂�𝑛 
 

(2-11) 

𝑃(𝑢𝑖, 𝛿𝑢𝑖) → 𝑃(Δ𝑢𝑖, 𝑢𝑖 , 𝛿𝑢𝑖) = 𝑃𝐶∫ {𝛿𝑢}𝑇〈−{Δu}𝑇�̂�𝑛〉{�̂�𝑛} 𝑑𝑆
𝜕ℬ

 

 

(2-12) 

Here the operator 〈𝑥〉 still enforces no penalty when the gap is zero if there is no 

penetration. The penalty term of Equation (2-8) restricts penetration, thus allowing 

sliding in an unrestricted or frictionless way. To enforce tied or bonded contact, the 

tangential gap must be considered and penalized as: 

𝛿𝑃 = ∫ 𝑃𝑁𝛿𝑔𝑛〈−𝑔𝑛〉 + 𝑃𝑇𝑔𝑡𝛿𝑔𝑡𝑑𝑆
𝜕ℬ

 

 

(2-13) 

However, if frictional contact is considered instead of a penalty 𝑃𝑇𝑔𝑡, the friction force  

𝑡𝑇 is used such as in [7], [8]: 

𝛿𝑃 = ∫ 𝑃𝑁𝛿𝑔𝑛〈−𝑔𝑛〉 + 𝑡𝑇𝛿𝑔𝑡𝑑𝑆
𝜕ℬ

 

 

(2-14) 

This substitution will similarly be applied when including friction within the Lagrangian 

method. 
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2.3. Lagrangian Multiplier Method 

The Lagrangian multiplier method augments the solution structure of the potential 

energy equation by adding a new unknown, the Lagrange multiplier 𝜆𝑛. Here the 

solution is such that the minimum of the augmented potential energy will determine 𝜆𝑛 

such that the constraint condition is satisfied. This gives the additional contribution due 

to contact as: 

∫ 𝜆𝑛𝛿𝑔𝑛𝑑𝑆
𝜕ℬ

 

 

(2-15) 

 As in the above described penalty method, when relative sliding with friction is 

considered, the additional contact term for the Lagrange method becomes: 

∫ 𝜆𝑛𝛿𝑔𝑛 + 𝑡𝑇𝛿𝑔𝑡 𝑑𝑆
𝜕ℬ

 

 

(2-16) 

Unlike the penalty method here, the multiplier 𝜆𝑛 is an additional variable which 

must be solved for. This method can be converted back into the penalty method by 

regularizing via 𝜆𝑛 ≈ 𝑃𝑁𝑔𝑛 which holds true as 𝑃𝑁 →  ∞. However, with the exact 

determination of 𝜆𝑛 only then will 𝑔 = 0 on the contact region. To achieve this while still 

being able to solve for 𝜆𝑛 the augmented Lagrangian method has been developed as 

[9]: 

∫ 𝜆𝑛̅̅ ̅𝛿𝑔𝑛+𝑃𝑁𝛿𝑔𝑛〈−𝑔𝑛〉 + 𝑡𝑇𝛿𝑔𝑡 𝑑𝑆
𝜕ℬ

 

 

(2-17) 

Here, the augmented Lagrangian 𝜆𝑛 is updated each iteration loop, note the 

appearance of the penalty term 𝑃𝑁. There are multiple methods for updating 𝜆𝑛, the 

simplest is given as: 

𝜆𝑛,𝑛𝑒𝑤 = 𝜆𝑛,𝑜𝑙𝑑 + 𝑃𝑛𝑔𝑛,𝑛𝑒𝑤   
(2-18) 
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This method has the effect of enforcing 𝑔 = 0 on the contact region, while 

making the solution to 𝜆𝑛 more approachable. Thus, the augmented Lagrangian method 

may be considered a combination of the penalty and Lagrangian multiplier methods. A 

comparison of the accuracy of these methods is given in [10] additional methods, some 

of which extend the Lagrangian method, are given in [1], [6]. 

2.4. Hertzian Contact 

The analytical solution to contact between two constant curvature surfaces was 

first published by Heinrich Hertz in 1881 [11]. Originally this work focused on the non-

adhesive point-contact between bodies without friction and generally assumes that 

there is only a normal load 𝑁 that is applied through the contact region. Some point 

contact problems are shown in Figure 2-2; note physically that these represent line 

contact problems.  

 
Figure 2-2. Differing Hertzian contact possibilities within 2D for point-contact. 𝑁 and 𝑄 

represent the normal and tangential force transferred through the contact 
region. 

In Hertzian theory, the pressure distribution across the contact half-width 𝑎 is an 

elliptical distribution given by: 
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𝑝(𝑥) = −𝑝0√1− (
𝑥

𝑎
)
2

 

 

(2-19) 

𝑝0 =
2𝑁

𝜋𝑎
 

 

(2-20) 

where 𝑝0 is the peak contact pressure that occurs at the contact point [12]–[15]. A 

solution for 𝑎 can be computed analytically if the composite modulus 𝐸∗and composite 

radius 𝑅∗ of the bodies coming into contact are known; these are defined by 

1

𝐸∗
=
1 − 𝜈1

2

𝐸1
+
1 − 𝜈2

2

𝐸2
 

(2-21) 

1

𝑅∗
=
1

𝑅1
+
1

𝑅2
 

 

(2-22) 

where 𝐸1 and 𝜈1 are the elastic modulus and Poisson's ratio for part 1, and 𝐸2 and 𝜈2  

for part 2. Note that for a flat plane such as in Figure 2-2, the radius is infinity which has 

the effect of reducing Equation (2-22) to 𝑅∗ = 𝑅1 and for the concave example the 

radius would be negative. 

The analytical solution for 2D line contact is given as follows [13]: 

𝑎 = √
4𝑁𝑅∗

𝜋𝐸∗
 (2-23) 

Here 𝑁 is the normal load transferred through the contact. This solution is obtained by 

equating the integration of Equation (2-19) across the contact region to the total normal 

load applied 𝑁 [13].  This analytical method is used to compute the half-width 𝑎 directly 

without iterative methods leading to an entirely linear solution structure as pursued in 

[4]. Although such a solution structure requires prior knowledge of the final load 

transmitted through the contact and an ability to compute 𝑅∗ for two given parts. 
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2.5. Inclusion of Friction 

Many have extended this classical solution to include the addition of a tangential 

force applied to the body. One class of these problems is known as micro-slip or partial 

slipping, where within the contact area's outermost region relative slip between the parts 

occurs. In fact, with any applied tangential force, a small region on edge of the contact 

region will be in slip. The slipping region becomes larger as the ratio of the applied 

tangential to normal force increases. For linear elastic assumptions, the normal force 

and shear force effects can be split into two problems [15]. When a shear force is 

applied, the pressure distribution is still the same as in Equation (2-19). However, once 

a tangential force is applied to the contact, a net shear force 𝑄 must be transferred 

through the contact region. From the definition of Coulombs' law of friction, the 

maximum shear force that can be transferred between two points of a body in contact is 

given by [8]: 

𝑞𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ≤ 𝜇𝜎𝑛𝑜𝑟𝑚𝑎𝑙 

 
(2-24) 

Noting the elliptical distribution of the contact pressure, the max shear force 

which can be maintained between two points in contact at the very edge of contact 

tends toward zero; thus, a relative slip occurs in this region. The distribution of shear in 

the contact region has been derived as 

𝑞(𝑥) = −𝜇𝑝(𝑥) + 𝑞′(𝑥) = 𝜇𝑝0√1− (
𝑥

𝑎
)
2

+ 𝑞′(𝑥) 

 

(2-25) 

where 𝑞′(𝑥) is a perturbation on the fully sliding solution within the sticking zone 

[12][15]. The perturbation 𝑞′(𝑥) will always be zero within the slip zone 𝑎 > |𝑥| > 𝑐 as 
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within this region the shear is already the maximum. Considering the net shear 𝑄 that 

the contact region needs to transmit, 𝑞′(𝑥) has been determined as: 

𝑞′ = −𝜇𝑝0 (
𝑐

𝑎
)√1 − (

𝑥

𝑐
)
2

          |
𝑥

𝑐
| < 0 

 

(2-26) 

Note that the shear distribution 𝑞(𝑥) is continuous, but it is not continuously 

differentiable. The plot of 𝑞(𝑥) through the contact width is shown in Figure 2-3, where it 

has been normalized by the coefficient of friction 𝜇. 

 

Figure 2-3. Analytical shear force distribution through the contact width for various 
contact force ratios normalized by the friction coefficient µ. 

A contact force ratio 𝛽 can be defined as a ratio of the shear force and normal force 

transmitted through the contact by: 

𝛽 =
𝑄

𝑁
=
Contact Tangental Force

Contact Normal Force
 

 

(2-27) 

Gross slip or sliding will occur when 𝑄 ≥ 𝜇𝑃 or 𝛽 ≥ 𝜇, which would indicate that the tied 

region 𝑐 is equal to zero (as the region is entirely sliding). The gross slip condition is 

represented by the dashed line in Figure 2-3 where 
𝛽

𝜇
= 1. Taking the integral of 

Equation (2-25) across the contact region yields the equations: 
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𝑄 =
𝑓𝑝0𝜋

2𝑎
(𝑎2 − 𝑐2) 

(2-28) 

𝑐

𝑎
= √1 − |

𝑄

𝜇𝑁
 | = √1 − |

𝛽

𝜇
 |     (2D) 

(2-29) 

𝑐

𝑎
= √1 − |

𝛽

𝜇
 |

3

      (3D) 
(2-30) 

 
Equation (2-29) gives the contact width ratio 𝑐/𝑎 as a function of the contact load ratio 𝛽 

and friction coefficient 𝜇. Similarly, the contact width ratio is defined for the 3D case in 

Equation (2-30) and have no dependence on the geometry. For constant curvatures, 

some analytical solutions for the stress distribution have been found for both cases in 

2D and 3D [12], [15] under linear strain assumptions. 

2.6. Contact Analysis Available in Contemporary FEA Software 

Contact analysis solutions are provided in various commercial software and in a 

few free applications. The implementations generally fall into three categories listed in 

order of increasing computational cost: bonded, no-penetration, and no penetration with 

friction. The above terms are based on the terminology used in SolidWorks FEA [16]. 

The most general of these cases is contact without penetration and with friction, which 

is defined by the requirement that the two bodies cannot penetrate each other, and an 

additional friction force is enforced. The friction force in this case is equal to Equation 

(2-24) based on a specified material friction coefficient. In this work, the following terms 

will be used to describe the relative motion of the two bodies: tied, fully sliding, and 

sliding with friction.  

Physically speaking, tied (or bonded) can be thought of as when two surfaces 

come into contact; they forever remain in contact. In effect, there is an infinite coefficient 

of friction such that no tangential force will cause relative displacement once two 
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surface points come in contact. Altogether for problems without gross sliding, this is a 

good approximation, and for problems without tangential forces, such as with the 

classical Hertz problem with only normal force, the tied assumption will provide a result 

identical to the analytical solution [5]. At the tips of a contact region, the normal force 

relative to the surface between the two parts trends toward zero. Since the max friction 

force is a function of normal force, some slipping will always occur at the tips if a net 

shear force is transferred through the contact [12]. With a tied assumption, when a 

tangential force is applied, stress singularities can occur at the contact edges since the 

shear force needed within this region to enforce the no sliding condition tends toward 

infinity [15]. However, the solution recovered is still generally valid if gross slip is not 

expected. 

Sliding contact is similar to the tied condition, but there is only a restriction that 

the two parts can’t penetrate, transferring only a normal force with respect to the contact 

surface. Therefore, the coefficient of friction is assumed to be equal to zero. While 

physically impossible, this analysis method provides a simplified way to simulate contact 

while allowing gross sliding. For the Hertzian problem with tangential force, at least 

under linear assumptions, the normal force is a decoupled problem from the shear force 

[15]. A primary limitation is the neglection of friction makes this assumption unsuitable 

for simulation of structures that are unconstraint in the absence of friction.  

Sliding with friction is a combination of the tied and sliding contact method. 

According to Hertz's contact theory, a contact region under shear experiences a partial 

slip. The region on the inside of the contact area is tied since the inequality of Equation 

(2-24) is satisfied. Within the sliding region, instead, Equation (2-24) becomes an 
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equality (or one could say it is at the maximum friction) since the normal force at the 

edges is not enough to fully resist sliding between the surfaces. This results in two 

distinct regions, one tied and the other slipping [14], [17]. In cases where the whole 

region is slipping, gross sliding occurs. These situations fall outside the scope of 

methodology presented in this work as, generally, the bodies are no longer static. 

However, a constrained frictionless example is given in Example 3 which includes some 

gross slip between the bodies.
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CHAPTER 3 
3. THE IMMERSED BOUNDARY METHOD  

 
The immersed boundary finite element method (IBFEM) is an extension of 

traditional finite element analysis without the need for a mesh that conforms to the part's 

geometry. Instead, with IBFEM, one considers a body (or part) that is immersed into a 

mesh of rectangles or cuboids; this is shown in 2D and 3D in Figure 3-1. The motivation 

behind this method is both a simplification of meshing for analysis of parts as well as a 

more exact integration and approximation by using elements that are square or cubic. 

 
 

 
Figure 3-1. Examples of IBFEM meshes. a) 2D frame structure immersed within square 

elements. b) 3D propeller immersed within cubic elements. 

Simplified meshing is achieved by an initial structured mesh. Consider the 

meshing process in IBFEM. The user specifies an initial mesh size or counts, 

determining the element dimensions. A background mesh is constructed using the 

bounding box of the geometry, then any elements which do not have any volume of the 

part within them are eliminated. This leaves two classes of elements: ones completely 

within the part and those on the boundary of the part. Invoking the immersion analogy, if 

a volume is subdivided into a bunch of cubes, then the body is immersed within that 

volume. Some of the cubes will still contain nothing and are discarded, others will be 

a) b) 



 

32 

completely within the part, and some will only be partially occupied by the part. The 

boundary elements in Figure 3-1 are those which intersect with the boundary, which is 

represented by the blue lines. Computationally this is much faster than generating a 

mesh that directly conforms to the geometry; that said, polygon slicing is required for 

boundary elements within the IBFEM for volume integration.  

The idea of achieving more exact integration follows from using completely cubic 

or square elements. For elements that are completely within the part, the stiffness 

matrix is exact, and there are direction solutions for the stiffness without the need for 

numerical integration. This is because the Jacobian for rectangular and cuboid elements 

are constant, taking on values proportional to the side length ratios. Generally, but not 

necessarily, within IBFEM, all side lengths are the same; this further reduces the 

Jacobian to a single value in all spatial directions. The Jacobian is still constant for 

boundary elements, but a volume integration is only performed for the region occupied 

by the part. This is compared to traditional FEM meshes, which are skewed or 

otherwise deformed.  

Consider from traditional FEM the displacement approximation of a 2D element 

with 𝑛 nodes; which is nothing more than the application of the element shape functions 

to approximate the displacement within the element: 

{𝑢ℎ} = [
𝑁1 0 … 𝑁𝑛 0
0 𝑁1 … 0 𝑁𝑛

]
⏟              

2×2𝑛
{
 
 

 
 
𝑞1𝑥
𝑞1𝑦
…
𝑞𝑛𝑥
𝑞𝑛𝑦}

 
 

 
 

= [𝑁]{𝑋𝑒} 
(3-1) 

Within IBFEM, the approximation of {𝑢} is modified from {𝑢ℎ} to enforce essential 

boundary conditions. In the absence of these, {𝑢} reduces to {𝑢ℎ}. Alike traditional finite 

element methods, implicit boundary conditions, such as traction on a surface, can be 
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applied by integrating along the surface to solve for the force contribution to each 

element node. However, applying an essential boundary condition, such as fixed 

displacement in solid mechanics, is not as straightforward since the boundaries do not 

necessarily conform to the mesh in IBFEM.  

3.1. Fixed Essential Boundary Condition 

 

Figure 3-2. Step boundary region of a part. 𝜙 is the signed distance function which 
gives the distance of any point from the surface. 𝜙 = 0 on the surface. 

In traditional FEM, essential boundary conditions are imposed by specifying 

displacement at nodes for specified degrees of freedom. This allows one to strike these 

equations from the final assembly. If a non-zero displacement is specified for a 

particular DOF of a node, the additional force from that equation must be accounted for 

as an external force in the RHS of the assembled problem [𝐾]{𝑋} = {𝐹}. Within IBFEM, 

the nodes are no longer necessary on the edge of a part; this makes specifying 

displacements and striking nodes not feasible. To specify a displacement 𝑎𝑖 on a 

boundary, the following solution structure has been proposed [2]: 

𝑢𝑖 = 𝐻𝑖𝑗𝑢𝑖
ℎ + (𝛿𝑖𝑗 − 𝐻𝑖𝑗)𝑎𝑖 

(3-2) 
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The variable {uh} = [𝑁]{𝑋𝑒} is defined as the underlying mesh displacement, and the 

matrix 𝐻𝑖𝑗, which is generally diagonal, enforces the specified boundary condition 𝑎𝑖. 

Equation (3-2) can also be written more compactly by introducing [𝑁] = [𝐻][𝑁] as: 

{𝑢} = [𝑁]{𝑋𝑒}  + ([𝐼] − [𝐻]){𝑎} 

 
(3-3) 

While binary step functions can be used to satisfy Equation (3-2), doing so is 

prone to numerical inaccuracy and produces infinite derivatives. Instead, an 

approximate step function H(𝜙) is used. It can be noted that as the boundary region 𝛿 

approaches zero, H approaches the unit step function [2]. The value 𝜙 is the signed 

distance function from the body's surface. Outside of the body, the step value 𝜙 is 

negative, inside of the body 𝜙 is positive, and on the boundary the step value is 𝜙 zero; 

this is shown in Figure 3-2. H(𝜙) is defined as a function of the signed distance  𝜙 as: 

H(𝜙) = {  

1 𝜙 ≥ 𝛿
𝜙

𝛿
(2 −

𝜙

𝛿
) 0 ≤ 𝜙 ≤ 𝛿

0 𝜙 < 0

 (3-4) 

 
 

 

This is known as the step boundary method, which is the basis for enforcing essential 

boundary conditions within IBFEM [2]. 

For example, consider when all degrees of freedom have a specified 

displacement 𝑎𝑖 = (𝑢0, 𝑣0, 𝑤0)  on the boundary. To satisfy this condition, Equation (3-2) 

must reduce to 𝑢𝑖 = 𝑎𝑖 on the boundary, suggesting 𝐻𝑖𝑗 will take on the form: 

𝐻𝑖𝑗 = [

H(𝜙)

H(𝜙)

H(𝜙)

] 

 

(3-5) 
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 Now consider restricting only some degrees of freedom such that 𝑎𝑖 =

(𝑢0, 𝐟𝐫𝐞𝐞,𝑤0). To satisfy these boundary conditions, Equation (3-2) must instead reduce 

to 𝑢𝑥 = 𝑢0, 𝑢𝑦 = 𝑢𝑦
ℎ, 𝑢 = 𝑤0. Meaning 𝐻𝑖𝑗 will take on the form: 

𝐻𝑖𝑗 = [
H(𝜙)

1
H(𝜙)

] (3-6) 

 

Generally, if we are considering a local coordinate system 𝐿 where 𝑎𝑖
𝐿 can be 

expressed. 𝐻𝑖𝑗
𝐿  will always be a diagonal matrix defined by the vector 𝐻𝑖

𝐿 as 

𝐻𝑖𝑗
𝐿 = 𝛿𝑖𝑗𝐻𝑖

𝐿 

 

𝐻𝑖
𝐿 = {  

H(𝜙) 𝑎𝑖
𝐿     is not 𝑓𝑟𝑒𝑒

1 𝑎𝑖
𝐿            is 𝑓𝑟𝑒𝑒

 

(3-7) 

 

That is to say 𝐻𝑖𝑗 will be diagonal if 𝐻𝑖
𝐿 = H(𝜙) meaning every DOF is fixed, such as in 

Equation (3-5). 𝐻𝑖𝑗 will also be diagonal if the coordinate system 𝑎𝑖
𝐿 is the same as the 

global coordinate system, such as in Equation (3-6).  

3.2. Sliding Essential Boundary Condition 

 
Figure 3-3. Part with boundaries not aligned with the global coordinate system. The 

local surface normal �̂� is shown. 
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Now consider a boundary that is not aligned with the global coordinate system, 

such as the one shown in Figure 3-3. A displacement may be specified along the 

normal direction while allowing the tangential direction to be free or sliding. This is easily 

represented in a coordinate system local to the surface, such as: 𝑎𝑖
𝐿 = (𝑓𝑟𝑒𝑒, 𝑎𝑛, 𝑓𝑟𝑒𝑒). 

However, 𝑎𝑖
𝐿 cannot be logically represented in the global coordinate system since the 

notion of “free” loses meaning with respect to the global coordinate system. Such a 

sliding boundary condition must be defined with respect to the local surface as in 

Equation (3-7). Consider a rotation matrix [𝑅] defined between the displacement in the 

local coordinate system 𝑢𝑖
𝐿 and the global coordinate system 𝑢𝑖 such as: 

𝑢𝑖
𝐿 = 𝑅𝑖𝑗𝑢𝑗 

(3-8) 

 
Then Equation (3-25) is transformed using [𝑅] as: 
 

𝑢𝑖
𝐿 = 𝐻𝑖𝑗

𝐿𝑢𝑗
𝐿,ℎ + (𝛿𝑖𝑗 − 𝐻𝑖𝑗

𝐿 )𝑎𝑗
𝐿

⏟                  
Local Coordinate System.

𝐻𝐿 is always diagonal

    ↔      𝑢𝑖 = 𝐻𝑖𝑗𝑢𝑗 + (𝛿𝑖𝑗 − 𝐻𝑖𝑗)𝑎𝑗⏟                
Global Coordinate System

 

 

(3-9) 

However, as noted for an arbitrary aligned sliding or “free” boundary condition, 𝑎𝑖
𝐿 

seemly cannot be readily converted to the global system 𝑎𝑗. Although, it has been 

shown that any value can be assigned to the free components of 𝑎𝑖
𝐿 since, in the end, its 

effect simply drops out because of the construction of 𝐻𝑖𝑗
𝐿 . This is proven below in 2D 

when only the local surface normal direction is fixed. Consider a rotation matrix [𝑅] 

which maps the local coordinate system to the global one as defined in Equation (3-8). 

This matrix can be constructed using the local normal of a point on a surface, as shown 

in Figure 3-3. In 2D, this rotation can be represented using a single angle 𝜃 as 

[𝑅] = [
𝑐 𝑠
−𝑠 𝑐

] = [
cos (𝜃) sin (𝜃)
−sin (𝜃) cos (𝜃)

] 

 

(3-10) 
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[𝐻𝐿] = [
1

H(𝜙)
] 

 

[𝐻] = [𝑅]𝑇[𝐻𝐿][𝑅] = [
−𝑠2 (H − 1) 𝑐 𝑠 (H − 1)

𝑐 𝑠 (H − 1) −𝑐2 (H − 1)
] 

 

{𝑎𝐿} = {
𝑎𝑡
𝑎𝑛
} = [𝑅]{𝑎} 

{𝑎} = [𝑅]𝑇{𝑎𝐿} = {
𝑎𝑡  𝑐 − 𝑎𝑛 𝑠
𝑎𝑛 𝑐 + 𝑎𝑡  𝑠

} 

 

[𝐻]{𝑎} = {
H 𝑎𝑛 𝑠

3 − 𝑎𝑛 𝑠
3 − 𝑎𝑛 𝑐

2 𝑠 + H 𝑎𝑛 𝑐
2 𝑠

𝑎𝑛 𝑐
3 − H 𝑎𝑛 𝑐

3 + 𝑎𝑛 𝑐 𝑠
2 − H 𝑎𝑛 𝑐 𝑠

2} = {
𝑎𝑛 𝑠 (H − 1) 

−𝑎𝑛 𝑐 (H − 1)
} (3-11) 

 

It can be seen from the expansion of Equation (3-11) that by imposing the sliding 

condition within [𝐻𝐿] (i.e. setting the local tangential direction to one), that 𝑎𝑡 has no 

effect on the final result and can take on any value even after transformation.   

Equation (3-9) can be written for 2D with sliding allowed in the tangential 

direction using matrix notation as: 

{
𝑢𝑥
𝑢𝑦
} = [𝑅]𝑇 [ 0

𝐻
] [𝑅]

⏟          
[𝐻]

{
𝑢𝑥
ℎ

𝑢𝑦
ℎ} + [𝑅]

𝑇 [ 0
1 − H

] [𝑅] {
𝑎𝑥
𝑎𝑦
} (3-12) 

The second term, in this case, is dependent only upon the specified displacement 

normal to the sliding direction 𝑎𝑛. In practice 𝑎𝑛 is often specified as zero 

displacements, thus eliminating the second term from Equation (3-12).  

 
3.3. Volume Integration 

Integrating across the part volume also required a different treatment in IBFEM 

than traditional FEA methods but only for boundary elements. For completely full 

elements or rather ones completely immersed within the body, the volume integration 

reduces to traditional methods. In fact, some exact solutions for the stiffness of 

rectangular and cuboid elements do exist, which can further reduce the computational 
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requirement for these elements [18]. In addition, the fact that all the elements often have 

the same size indicates that the complete elements will all have the same stiffness (for 

some analysis types), which can be leveraged to reduce computational requirements 

further. However, for boundary elements, one must perform numerical integration of 

only the volume within the element which is occupied by the part. This can be 

accomplished by splitting the occupied region within the element into approximate 

triangles or tetrahedrons. For each of these regions, numerical integration can be 

performed, and their contribution is added to the element’s stiffness [2]. Similarly, this 

can be applied to any volume integration, such as the inclusion of a body force.   

3.4. IBFEM Solution Structure 

For static solid mechanics problems, the principle of virtual work is given as: 

∫ {𝛿𝜀}𝑇{𝜎} 𝑑𝑉
ℬ⏟          
Internal Force

= ∫ {𝛿𝑢}𝑇{𝑡 }𝑑𝑆
𝜕ℬ⏟          
Surface Traction

+∫ {𝛿𝑢}𝑇{𝑏} 𝑑𝑉
ℬ⏟          
Body Forces

 

 

(3-13) 

∑∫ {𝛿𝜀}𝑇{𝜎} 𝑑𝑉
ℬ

𝑁𝐸

𝑒=1

= ∑∫ {𝛿𝑢}𝑇{𝑡 } 𝑑𝑆
𝜕ℬ

𝑁𝐵𝐸

𝑒=1

+∑∫ {𝛿𝑢}𝑇{𝑏} 𝑑𝑉
ℬ

𝑁𝐸

𝑒=1

 

 

(3-14) 

Here {𝛿𝜀} is the virtual strain, {𝛿𝑢} is the virtual displacement, {𝜎} is the stress, {𝑡} and 

{𝑏} are external surface tractions and body forces. To apply Equation (3-13), first 

consider the definition of strain under small-strain theory. For this, the linear strain 

operator ∇𝑠 is introduced as: 

{𝜀} = {

𝜀1
𝜀2
2𝜀12

} =

{
  
 

  
 

𝜕𝑢1
𝜕𝑥1
𝜕𝑢2
𝜕𝑥2

𝜕𝑢1
𝜕𝑥2

+
𝜕𝑢2
𝜕𝑥1}

  
 

  
 

= ∇𝑠(𝑢𝑖) 

 

(3-15) 
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which, when applied to the solution structure, Equation (3-25) yields the following result 

for strain: 

{𝑢} = [𝐻][𝑁]{𝑋𝑒} + [𝐼 − 𝐻]{𝑎} 
 

∇𝑠(𝑢𝑖) = ∇𝑠([𝐻][𝑁]){𝑋𝑒} − ∇𝑠([𝐻]){𝑎} 

{𝜀} = ∇𝑠(𝑢𝑖) = ([∇𝑠𝐻][𝑁] + [H][∇𝑠𝑁]){Xe} − ∇𝑠([𝐻]){𝑎} 

(3-16) 

[𝐵] = ∇𝑠[𝑁] = ∇𝑠([𝐻][𝑁]) = [∇𝑠𝐻][𝑁] + [H][∇𝑠𝑁] 

[𝐵] = ∇𝑠[𝑁] 
(3-17) 

Here [𝐵] is the same as the strain displacement matrix obtained in traditional 

FEM [18] while [𝐵] is the modified form that allows for the inclusion of the essential 

boundary condition. For boundaries that do not have specified essential boundary 

condition [𝐵] simply reduces to [𝐵]  as can be shown from Equation (3-17) when [𝐻] is 

constant. The extra strain associated with {𝑎} is ∇𝑠([𝐻]){𝑎} similarly the force due to {𝑎} 

would become [𝐶]∇𝑠([𝐻]){𝑎}. This extra force only occurs for a non-zero fixed 

displacement, which is analogous to traditional FEA where one must compute the RHS 

contribution from a specified displacement on a node before striking it from the final 

assembly. However, it may be noted the value of ∇𝑠([𝐻]){𝑎} is not equal to the 

externally applied load. Rather it is the force required to overcome the extra stiffness 

associated with the essential boundary condition and move the boundary by the 

specified amount. 

The term ∇𝑠([𝐻]) is the linear strain operator applied to the [𝐻] matrix. 

Considering the sliding condition, [𝐻] is not a diagonal matrix. Rather it is defined as: 

[𝐻] = [𝑅]𝑇[𝐻𝐿][𝑅] = [
𝐻11 𝐻12
𝐻12 𝐻22

] (3-18) 

[𝜕𝐻]  ≡  ∇𝑠([𝐻]) 
(3-19) 
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Computing [𝜕𝐻] requires the spatial gradient of [𝐻] which normally results in a 3rd order 

tensor as [𝐻] is a 2nd order tensor. However, if the symmetry of [𝐻] is leveraged, the 

spatial gradient of [𝐻] in 2-dimensions can be written compactly as: 

∇𝐻 =

[
 
 
 
 
 
 
𝜕𝐻11
𝜕𝑥

𝜕𝐻11
𝜕𝑦

𝜕𝐻22
𝜕𝑥

𝜕𝐻22
𝜕𝑦

𝜕𝐻12
𝜕𝑥

𝜕𝐻12
𝜕𝑦 ]

 
 
 
 
 
 

 

 

(3-20) 

Considering the definition of ∇𝑠 the matrix [𝜕𝐻] can be computed as 

[𝜕𝐻]  =

[
 
 
 
 
 
 

𝜕𝐻11
𝜕𝑥

𝜕𝐻12
𝜕𝑥

𝜕𝐻21
𝜕𝑦

𝜕𝐻22
𝜕𝑦

𝜕𝐻11
𝜕𝑦

+
𝜕𝐻21
𝜕𝑥

𝜕𝐻22
𝜕𝑥

+
𝜕𝐻12
𝜕𝑦 ]

 
 
 
 
 
 

 (3-21) 

The matrix [𝜕𝐻] can be constructed using the terms of the special gradient ∇𝐻. If all 

local/global degrees of freedom are fixed at an essential boundary condition, then [𝐻] is 

diagonal as shown in Equation (3-5). This reduces [𝜕𝐻] to: 

[𝜕𝐻]  =

[
 
 
 
 
 
 
𝜕𝐻11
𝜕𝑥

𝜕𝐻22
𝜕𝑦

𝜕𝐻11
𝜕𝑦

𝜕𝐻22
𝜕𝑥 ]

 
 
 
 
 
 

  

 

(3-22) 

The above equation is only true if [𝐻] is diagonal, which is to say that all local degrees 

of freedom are fixed via the essential boundary condition. Equation (3-17) applies to all 

cases as the non-diagonal terms reduce to zero. Consider when [𝐻𝐿] is allowed to slide 

in the local x-direction as shown in Equation (3-6). If the rotation matrix from the local to 
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the global coordinate system is used as defined in Equation (3-8) the global [𝐻] 

becomes: 

[𝐻] = [𝑅]𝑇 [
1 0
0 𝐻(𝜙)

] [𝑅] = [
𝑅11

2 + 𝐻(𝜙)𝑅21
2 𝑅11 𝑅12 + 𝑅21 𝑅22 𝐻(𝜙)

𝑅11 𝑅12 + 𝑅21 𝑅22𝐻(𝜙) 𝑅12
2 + 𝐻(𝜙) 𝑅22

2 ] 

 

(3-23) 

 

[𝜕𝐻] =  

[
 
 
 
 
 
 𝑅21

2  
𝜕𝐻(𝜙)

𝜕𝑋1
𝑅21 𝑅22

𝜕𝐻(𝜙)

𝜕𝑋1

𝑅21 𝑅22
𝜕𝐻(𝜙)

𝜕𝑋2
𝑅22

2 𝜕𝐻(𝜙)

𝜕𝑋2

𝑅21
2 𝜕𝐻(𝜙)

𝜕𝑋2
+ 𝑅21 𝑅22

𝜕𝐻(𝜙)

𝜕𝑋1
𝑅22

2 𝜕𝐻(𝜙)

 𝜕𝑋1
+ 𝑅21 𝑅22

𝜕𝐻(𝜙)

𝜕𝑋2 ]
 
 
 
 
 
 

 (3-24) 

 

While [𝑅] is a function of the local normal, it is assumed that 
𝜕𝑅𝑖𝑗

𝜕𝑥𝑖
 is zero. The 

spatial derivatives of 𝐻 can be found by applying the chain rule. 

 
𝜕𝐻(𝜙)

𝜕𝑥𝑖
=
𝜕𝐻

𝜕𝜙

𝜕𝜙

𝜕𝑥𝑖
 (3-25) 

 

The value 
𝜕𝜙

𝜕𝑥𝑖
 is the derivative of the boundary distance function with respect to the 

spatial direction 𝑥𝑖 the value of 
𝜕𝜙

𝜕𝑥𝑖
 Is simply the 𝑖th component of the normal at that 

point. This notion 
𝜕𝜙

𝜕𝑥𝑖
= �̂�𝑖 has been rigorously proven within [19]. 

The virtual strains can be represented by considering a virtual displacement field 

{𝛿𝑋} which is applied to the structure resulting in a virtual displacement: 

{𝛿𝑢} = [𝑁]{𝛿𝑋} 
 

(3-26) 

Applying the linear strain operator ∇𝑠 gives the virtual strain as: 

{𝛿𝜀} = [𝐵]{𝛿𝑋} (3-27) 

The virtual displacements are zero on the surface of the part with a prescribed 

displacement (essential boundary condition), making the work done by its reactions 
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zero. Therefore, the value {𝑎} does not appear in the virtual field’s definition. The stress 

within an element can be written considering an isotropic linear material as: 

{𝜎} = [𝐶]{𝜀} = [𝐶]([�̅�]𝑇{Xe} − [𝜕𝐻]{𝑎}) (3-28) 

 Combining these results into the principle of virtual work Equation (3-12) yields: 

∑{𝛿𝑋𝑒}
𝑇

(

 ∫ [�̅�]𝑇[𝐶][�̅�]𝑑𝑉
ℬ⏟          

Element Stiffness [Ke]

{𝑋𝑒} − ∫ [�̅�]𝑇[𝐶][𝜕𝐻]{a} 𝑑𝑆
𝜕ℬ⏟              

Essential Boundry Load {𝐹𝑎})

 

𝑁𝐸

𝑒=1

=∑{𝛿𝑋𝑒}
𝑇 ∫ [�̅�]𝑇𝑡 𝑑𝑆

𝜕ℬ⏟        
Applied Traction {Ft}

𝑁𝐸

𝑒=1

+∑{𝛿𝑋𝑒}
𝑇 ∫ [�̅�]𝑇𝑏 𝑑𝑉

ℬ⏟        
Body Forces {Fb}

𝑁𝐸

𝑒=1

 

 

(3-29) 

{𝐹𝑎} = ∫ [�̅�]𝑇[𝐶][𝜕𝐻]{a} 𝑑𝑉
ℬ

 
(3-30) 

∑{𝛿𝑋𝑒}
𝑇[𝐾𝑒]{𝑋𝑒}

𝑁𝐸

𝑒=1⏟            
Element Stiffness (𝐿𝐻𝑆)

=∑{𝛿𝑋𝑒}
𝑇({Ft} + {Fb} + {𝐹𝑎})

𝑁𝐸

𝑒=1⏟                  
Element Force (RHS)

 

 

(3-31) 

The load {𝐹𝑎} is the force needed to apply a non-zero boundary displacement of {a}. 

The need for this force can be understood by considering the extra stiffness which is 

applied near the specified essential boundary conditions. For this extra stiffness, there 

is a corresponding force {𝐹𝑎} needed to displace the boundary to the specified 

displacement {a}. This force is not to be confused with the reaction force resultant from 

the specified essential boundary condition. 
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CHAPTER 4 
4.  REPRESENTING EXACT GEOMETRY 

 

Figure 4-1. Line segment approximation of an ellipse. With error in the surface normal 
and the position shown 

4.1. Traditional Representation of Geometry 

Today most engineered parts are designed within CAD applications which are 

used to make drawings for the manufacture or, in most cases, directly exported to an 

automated manufacturing process. Most of these CAD applications combine Boolean 

operations to differing underlying surface elements; however, the output is almost 

always approximated into triangles (and lines) such as in the common STL format. It 

can be generally shown that with a finer approximation, your result tends toward the 

true geometry. This is analogous but distinct to finer meshes in IBFEM. For example, if 

an ellipse is represented by the line segment approximation as in Figure 4-1. No matter 

how fine the mesh is there will always remain geometric inaccuracy. For the geometry in 

Figure 4-1, consider integration along the boundary of the straight-line approximation as 

opposed to the true ellipse; the normal is constant along the straight lines, and there is 

an obvious position inaccuracy, except at the vertices. One can also observe that for a 
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concave surface, you will have an under approximation of stiffness. While for convex 

surfaces, you will have an over-approximation of stiffness. Of course, in many FEA 

programs, the mesh is generated using the exact geometry; thus, a more exact answer 

is found from a progressively finer mesh, but this is done at the expense of more 

elements and is still an approximation. Another solution to geometric inaccuracy 

leverages isogeometric analysis using NURB basis functions, which allows one to 

represent exact geometry or a close approximation at the expense of higher 

computational requirements. Contact has been successfully implemented within 

isogeometric analysis using a penalty function [20]. 

Along with the common STL representation of the geometry of a part, there are 

also formats that define the underlying surface and curve representations of a part. This 

includes all the surface and curve primitives one can consider such as: lines, circles, 

ellipses, planes, cones, spheres, ellipsoids, and tori. One such file format is ACIS; 

alternatively, such as in this work, a JSON API provided by the CAD software OnShape 

was utilized to obtain the exact geometry information for a part. This allows one to 

design a part within the OnShape CAD application and then import not only the 

approximated triangles and lines but also the surface definitions. 

4.2. Projecting onto Exact Geometry 

 A solution to the use of inaccurate line segments is to project the needed 

points and normals of a curve or surface. This is accomplished using the underlying 

definition of the geometry primitive. Given a point on a straight-line segment in Figure 

4-1 the closest point will always be along the normal between the point and the true 

surface. Once the projected point location is found, one can compute the normal. This 

operation is trivial and computationally efficient for most primitives. However, for 



 

45 

example, for an ellipse and generalized surfaces a search algorithm must be used to 

find the closest point on the true surface. The effect of the results from these projection 

algorithms are shown in Example 1 within Chapter 6; these are compared to the non-

projected result. Here the points being projected are the integrations points along the 

approximated line segments. 

4.2.1. Line and Plane 

This is the most trivial case as no projections are generally needed for positions 

or normals. This is justified by considering that the output geometry approximation is 

made up of straight-line segments and triangles therefore they can already represent 

the exact underlying geometry of lines and planes. For completeness, consider a 

random point 𝑝  which is projected to a point 𝑝 ∗ on to a line segment between vertices 𝑣1 

and 𝑣2 given by: 

𝑟 = 𝑝 − 𝑣1⃗⃗⃗⃗  
(4-1) 

�̂� =
𝑣2⃗⃗⃗⃗ − 𝑣1⃗⃗⃗⃗ 

‖𝑣2⃗⃗⃗⃗ − 𝑣1⃗⃗⃗⃗ ‖
 (4-2) 

𝑟 𝑡 = (𝑟 ∙ �̂�)�̂� 
(4-3) 

𝑝 ∗ = 𝑣1⃗⃗⃗⃗ + 𝑟 𝑡 
(4-4) 

Similarly, a random point 𝑝   can be projected onto a plane defined by the normal �̂� and 

origin 𝑜  as shown in Figure 4-2. 
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Figure 4-2. Exact surface projection algorithm for a plane 

The projected point 𝑝 ∗ can be found as: 
 

𝑟 = 𝑝 − 𝑜  (4-5) 

𝑟 𝑛 = (𝑟 ∙ �̂�)�̂� (4-6) 

𝑟 𝑡 = 𝑟 − 𝑟 𝑛 (4-7) 

𝑝 ∗ = 𝑜 + 𝑟 𝑡 
(4-8) 

Both operations are computationally insignificant as the projected values can be 

computed directly using the definition of the geometry. The normals are constant and 

given directly in the case of a plane’s definition. 

4.2.2. Circles and Spheres 

Circles and spheres are defined by an origin 𝑜  and radius 𝑅 as shown in Figure 

4-3. As can be seen for a random point 𝑝  which is to be projected onto the true surface. 

The closest point will be along the normal, which is a vector from the origin to the point 

in question. 
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Figure 4-3. Exact surface projection algorithm for circles and spheres 

This makes computing the normal to the surface for circles and spheres as simple as: 

𝑟 = 𝑝 − 𝑜  (4-9) 

�̂� =
𝑟 

‖𝑟 ‖
 

(4-10) 

 

Then the closest point projection 𝑝 ∗ can be found using the radius 𝑅: 

𝑝 ∗ = 𝑅�̂� (4-11) 

 
4.2.3. Ellipse 

This is one of the most complicated primitives (aside from general surfaces), as 

finding the closest point is not a trivial computation. Instead, it requires the use of a 

search algorithm which in effect is a distance minimization. The convexity of the 

problem lends itself to the use of a minimization via a Newton-Raphson method; 

however, the use of the simple bisection method is much more effective [21]. Some 

CAD programs support ellipsoid primitives, which is the 3D version generalization of an 

ellipse. Similarly, this leads to a minimization problem where the bisection method still is 
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the most performant method [21]. Compared to other primitives, the ellipse is far more 

computationally expensive as it requires an iterative method. That said, using the 

bisection method for an ellipse, no more than four iterations are generally required for a 

satisfactory solution. More iterations would be needed for a hyper ellipsoid, but this 

primitive is not considered. 

 In 3D for an ellipse, the search algorithm becomes a minimization of the 

distance to the intersection of the surface formed by the union of an ellipsoid and plane 

defined by: 

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1 

(4-12) 

𝑥𝑛𝑥 + 𝑦𝑛𝑦 + 𝑧𝑛𝑧 = 0 (4-13) 

  

More practically, the point of interest 𝑝  can first be projected onto the plane of the ellipse 

�̂� by using: 

𝑝 𝑝 = 𝑝 − (𝑝 ̇ ∙ �̂�)�̂�   
(4-14) 

Then the problem can be made two-dimensional using the ellipse plane coordinate 

system (𝑢, 𝑣). This is shown in Figure 4-4; it may be observed there is no simple 

analytical method to determine the projected point. 
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Figure 4-4. Exact surface projection algorithm for an ellipse 

For the plane coordinate system, the minimization problem then becomes to find a 

value 𝑡 which has the minimum distance to 𝑝 𝑝 in the coordinate system (𝑢, 𝑣) from the 

ellipse surface: 

𝑢 = acos(𝑡)    𝑣 = 𝑏𝑠𝑖𝑛(𝑡) (4-15) 

This can be readily solved via the bisection method and converted back to the global 

coordinate system. Extensive explanation and algorithmic approaches are covered in 

[21]. The normal at a point on an ellipse is defined explicitly following Equation (4-15) 

as: 

𝑎𝑥

cos (𝑡)
−

𝑏𝑦

sin(𝑡)
= 𝑎2 + 𝑏2 (4-16) 

4.2.4. Cylinder 

To project a random point 𝑝  onto a cylinder which is defined by its origin 𝑜 , radius 

𝑅, and axis �̂� as shown in Figure 4-5. 
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Figure 4-5. Exact surface projection algorithm for a cylinder 

The projected point 𝑝 ∗ can be found from geometric construction as: 

𝑟 = 𝑝 − 𝑜  (4-17) 

𝑜 ′  =   𝑜   +     ( 𝑟 ∙ �̂� )�̂�    ⏟        
Length Along Axis

  

 

(4-18) 

𝑝 ∗ = 𝑜 ′ +
𝑝 − 𝑜 ′ 

‖𝑝 − 𝑜 ′‖
𝑅 (4-19) 

 
This gives the normal at the point 𝑝  on the cylinder as: 

�̂� =
𝑝 − 𝑜 ′

‖𝑝 − 𝑜 ′‖
 (4-20) 

 
4.2.5. Cone 

A cone can be defined by its origin 𝑜 , axis 𝑎 , and half-angle 𝜃. Though not 

intuitive, many underlying geometry engines use this representation along with a radius 

R to define cylinders, the main one being ACIS which is the engine used for many 
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common CAD applications [22]. A diagram of a projection onto a cone is shown in 

Figure 4-6. 

 

Figure 4-6. Exact surface projection algorithm for a cone 

 If one is to project a point 𝑝  onto the cone surface a local plane �̂� can first be defined 

as:  

�̂� =  𝑎  × (𝑝 − 𝑜 ) 
(4-21) 

The plane �̂� is represented in Figure 4-6 as the blue rectangle. Knowing the half-angle 

𝜃, the axis 𝑎  can then be rotated about �̂� to give a vector �̂� which is along the cone 

using Rodrigues' rotation formula [23]: 

�̂� = 𝑎 cos(𝜃) + (�̂� × �̂� )sin(𝜃) + �̂�(�̂� ∙ �̂�)(1 − cos(𝜃)) (4-22) 
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The line �̂� is the intersection of the plane �̂� and cone surface closest to point 𝑝 . Finally, 

knowing the direction �̂� the projected point  𝑝 ∗ which is on the cone surface is computed 

as:  

 𝑝 ∗ = [(𝑝 − 𝑜 ) ∙ �̂�]�̂� + 𝑜   
(4-23) 

The normal of the cone in this plane can be found by considering the geometry as: 

�̂� = �̂� × �̂� (4-24) 

4.2.6. Torus 

The torus turns up quite often in parts when you consider features such as fillets 

(radius on edge). A circular torus is defined with a major radius 𝑅 and a minor radius 𝑟. 

At the center of the torus is its origin 𝑜  with the torus orientation defined by an axis 𝑎  this 

is shown in Figure 4-7 [23]. The projection can be made from geometric construction 

alone, which consists of identifying the intersection plane (shown in blue), then finding a 

vector from the center of the outer torus loop to the point to be projected. Once the 

plane is identified, the problem reduces to one alike the projection of a circle. 
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Figure 4-7. Exact surface projection algorithm for a torus. 

 Alike the cone first, the plane �̂� is determined as: 

�̂� =  𝑎  × (𝑝 − 𝑜 ) 
(4-25) 

Within the plane defined by �̂�, �̂� is the direction from the torus origin to the center of its 

ring defined as: 

�̂� = �̂� × �̂� 
 

(4-26) 

 
An additional origin 𝑜 ′ is introduced, which is at the center of the circle closest to 𝑝  

formed by the intersection of the torus and plane �̂�. 𝑜 ′ is defined as: 

𝑜 ′ = 𝑜 + 𝑅�̂� (4-27) 

This reduces similarly to projecting a point onto a circle. The normal of the torus at the 

point to be projected is given as: 
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�̂� =
𝑝 − 𝑜 ′

‖𝑝 − 𝑜 ′‖
 

 

(4-28) 

Making the projected point  𝑝 ∗ equal to 

𝑝 ∗ = 𝑜 ′ + 𝑟�̂� (4-29) 

While a seemly daunting primitive, the projection on a torus can be computed 

extremely efficiently; however, for a general elliptical torus, an iterative method would 

have to be used, as previously discussed for ellipses. Most CAD programs do not use 

an elliptical torus to represent geometry. 

4.2.7. Verifying Projection Methods 

The preceding projection methods were tested using various geometry made 

within the CAD application OnShape. These parts where imported with their tessellated 

faces and underlying surface definitions. Then at each vertex of the tessellated 

triangles, which is guaranteed to be on the actual surface, the point is offset by a small 

distance along its normal. This new point is then projected using the algorithm 

developed for the given surface, the expected result is for it to return the original vertex. 

This was used to test all the projection algorithms resulting in only floating-point 

numerical error between the projected result and the original vertex. The costliest 

algorithm is the ellipse since it requires an iterative method, however, often only a 

maximum of four iterations where needed to find the desired closest point. The other 

surface projection algorithms have no significant computational cost given they are 

done via direct computation from geometric a construction. 

  
4.2.8. General Curves & Surfaces 

General surface representations can differ between different CAD programs. 

However, most of these are represented by a function of one or two variables; this is 
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known as a parametric space. Thus, a distance minimization can be used to find the 

closest point on a given surface to a given point. This is computationally expensive, and 

with more advanced surfaces comes the possibility of finding a local minimum. But this 

is often an insignificant issue as the point in question is in the vicinity of the surface; 

therefore, a good initial guess can be made. Computing the normal to a general surface 

also varies depending on the underlying representation. If you consider a point you want 

to project 𝑝  onto an arbitrary boundary 𝜕ℬ you are seeking a point 𝑝 ∗ on the boundary 

which is closest to 𝑝 . This can be represented as a minimization problem of the form: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   {  ‖ 𝑝 ∗ − 𝑝  ‖  }     𝑝 ∗ ∈ 𝜕ℬ      
(4-30) 

𝑝 ∗ = 𝑝 ∗(𝑠, 𝑡) 
(4-31) 

Newton iterations can be used to solve for the point 𝑝 ∗ based on its parametric definition 

normally represented by the coordinates  (𝑠, 𝑡) [23]. To determine an initial guess, a 

random sampling can be made. However, the possibility of finding a local minimum 

depends on how far the point to be projected 𝑝 ∗ is away from the surface. 

4.2.9. Application to FEM 

Figure 4-1 shows the geometry representation that most FEM software use to 

represent a curved boundary. This can lead to inaccuracy in both volume and surface 

integrations. This is amplified by problems where the exact geometry becomes critical to 

the solution structure, as is the case with contact. Once all primitives (curves and 

surfaces) are defined for a part, the projected point and exact surface normal can be 

computed for any given point. These projections are applied to surface integrals, which 

are computed via numerical integrations of lines or triangles that make up the boundary. 

The integration points within these lines (or triangles for 3D) can be projected onto their 
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closest true surface, and their true normal computed. However, there remains the issue 

of inaccurate stiffness due to the approximation of the true part geometry. The stiffness 

in the IBFEM method is computed using the volume of each element that is inside of the 

part. Currently, this is accomplished by splitting this region into triangles (or 

tetrahedrons for 3D) and performing numerical integration. In this case, a projection of 

integration points doesn’t make sense as they are embedded within the surface. In 

short, only surface integrals can benefit from this projection. Further work could be 

made to use the exact representation of surfaces to improve the accuracy of volume 

integrations. 
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CHAPTER 5 
5.  MODELING CONTACT WITHIN IBFEM 

Now contact between two parts is considered. Both parts have their own 

underlying mesh (or grid), as shown in Figure 5-1. In the potential contact region, these 

meshes overlap to form contact elements. Thus, each contact element can be thought 

of as an element that includes the nodes and displacements of both overlapping 

elements.  

 
Figure 5-1. Underlying grids for each part in a contact problem. Which are connected by 

the overlapping elements known as contact elements. The contact point in 
this example is shown by the black dot.  

It is noted that there is no condition that the overlapping meshes move or deform 

continuously at the nodes; rather, both overlapping elements will take on different 

displacements for each of their respective nodes. The displacements can be written like 
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Equation (3-1), but now each part’s element has its own displacement approximation 

as: 

{𝑢ℎ1} = [𝑁]{𝑋𝑒
𝑔1
}         {𝑢ℎ2} = [𝑁]{𝑋𝑒

𝑔2
} 

(5-1) 

Where 𝑢ℎ1 and 𝑢ℎ2 are analogous to the traditional FEM element shape function 

displacement approximations. The contact elements are regions where potential contact 

can occur between the two parts. If no contact is occurring within a particular contact 

element, its contribution is zero to both the assembled stiffness and delta force. 

5.1. Contact Solution Structure 

 
 

Figure 5-2. Compatibility condition for contact. Consider two points that come into 
contact due originally separated by a displacement ∆𝑖. 

Consider two points that come into contact, as shown in Figure 5-2. A vector ∆ 

can be drawn between the original position of the two points. If the two points are in 

contact, then their final position 𝑥𝑖
𝑔1

 and 𝑥𝑖
𝑔2

 must be equal. Which leads to the condition 

shown in Equation (5-3), requiring the difference in the displacement of the two points 

on the surface which come into contact should be equal to the original gap between 

them. 

∆𝑖  ≡  𝑋𝑖
𝑔1
− 𝑋𝑖

𝑔2
 (5-2) 
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∆𝑖 =  𝑢𝑖
𝑔2
− 𝑥𝑖

𝑔2
− 𝑢𝑖

𝑔1
+ 𝑥𝑖

𝑔1
= 𝑢𝑖

𝑔2
− 𝑢𝑖

𝑔1
 (5-3) 

To enforce this contact between the two grids, the following solution structure is applied 

to the contact elements.  

{𝑢} = [𝐻]{𝑢ℎ1} + [𝐼 − 𝐻]{𝑢ℎ2} + [𝐻]{Δ} 
 

(5-4) 

{𝑢} = [𝐻][𝑁]{𝑋𝑒
𝑔1
} + [𝐼 − 𝐻][𝑁]{𝑋𝑒

𝑔2
} + [𝐻]{Δ} 

 
(5-5) 

This structure for contact was first identified in [5] where the requirement of Δ was found 

to ensure that the parts come into contact. Without Δ, there is no enforcement that the 

two points will come into contact, and any deformation that occurs would just maintain 

that gap. Applying the principle of virtual work defined in Equation (3-13) to this new 

contact solution structure results in: 

∑∫ 𝛿𝜀𝑇𝜎 𝑑𝑉
ℬ

𝑁𝐸

𝑒=1

=∑∫ 𝛿𝑢𝑇𝑡 𝑑𝑆
𝜕ℬ

𝑁𝐸

𝑒=1

+∑∫ 𝛿𝑢𝑇𝑏 𝑑𝑉
ℬ

𝑁𝐸

𝑒=1

 

 

(5-6) 

∑{𝛿𝑋𝑒}
𝑇

(

 ∫ [�̅�]𝑇[𝐶][�̅�]𝑑𝑉
ℬ⏟          

Element Stiffness [Ke]

{𝑋𝑒}  + ∫ [�̅�]𝑇[𝐶][𝜕𝐻]{Δ} 𝑑𝑆
𝜕ℬ⏟              

𝐷𝑒𝑙𝑡𝑎 𝐹𝑜𝑟𝑐𝑒 {𝐹Δ} )

 

𝑁𝐸

𝑒=1

=∑{𝛿𝑋𝑒}
𝑇 ∫ [�̅�]𝑇𝑡 𝑑𝑆

𝜕ℬ⏟        
Applied Traction {Ft}

𝑁𝐸

𝑒=1

+∑{𝛿𝑋𝑒}
𝑇 ∫ [�̅�]𝑇𝑏 𝑑𝑉

ℬ⏟        
Body Forces {Fb}

𝑁𝐸

𝑒=1

 

 

(5-7) 

∑{𝛿𝑋𝑒}
𝑇[𝐾𝑒]{𝑋𝑒}

𝑁𝐸

𝑒=1⏟            
Element Stiffness (𝐿𝐻𝑆)

=∑{𝛿𝑋𝑒}
𝑇({Ft} + {Fb} − {𝐹Δ})

𝑁𝐸

𝑒=1⏟                    
Element Force (RHS)

 

 

(5-8) 

Where {Ft} are externally applied tractions and {Fb} is the body force.  The delta force 

{𝐹Δ} is included into the final assembly RHS as shown in Equation (5-8). Conceptually 

{𝐹Δ} can be thought of the force required to compress extra stiffness at the contact 

boundary to enforce two points coming together. For example, for a 2d plane 
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stress/strain problem with four-node elements {𝐹Δ} would take the form for each 

element as: 

{𝐹Δ} = ∫ [�̅�]𝑇⏟
16𝑥3

[𝐶]⏟
3𝑥3

[𝜕𝐻]⏟
3𝑥2

{Δ}⏟
2𝑥1

 𝑑𝑆
𝜕ℬ

 

 

(5-9) 

 
5.2. Contact Area Representation  

  
 

Figure 5-3. Sliding and tied region of a contact area. Measured by half-widths 𝑎 and 𝑐 
which represent the entire region and tied region. A example cord length is 
shown measuring from the contact point to an arbitrary point on the boundary. 

From Hertzian contact theory, there are two scalar lengths to consider in 2D point 

contact the tied half-width 𝑐 and total contact half-width 𝑎 shown in Figure 5-3. Where 

the contact ratio 
𝑐

𝑎
 is given by Equation (2-29) and depends on the ratio of contact forces 

transferred through the contact region and the coefficient of friction. From Hertzian 

theory, we expect that 𝑎 will depend only on normal force transferred through the 

contact. Within IBFEM, contact width 𝑎 is incremented with each Newton iteration to 

determine the correct contact width. One can also consider the sliding region length 𝑏 

defined as: 
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𝑎 = 𝑏 + 𝑐 (5-10) 

As the tangential force applied through the contact region increases, so does the sliding 

region. When enough tangential force is applied to make the entire region slide, the 

problem is no longer partial-slip but instead a gross-slipping problem. In this case, the 

entire contact region will have a relative displacement. To determine if a particular point 

on the part boundary is within the tied or sliding region, the cord length from the contact 

point to the point on the boundary is used as shown in Figure 5-3 and compared to the 

length of 𝑎 or 𝑐. The use of the cord length is an approximation for curved surfaces, 

while it is exact for a flat line. The cord length used is also based on the original 

undeformed geometry and not the updated, which is a further approximation but in line 

with small-displacement theory. The use of projecting points is crucial here for 

determining the correct displacement between two points that come into contact.  For 

small contact regions, it can be observed the cord approaches the value of the 

arclength. This can be seen in Figure 5-3 by considering the difference in cord vs. arc 

length of the region in contact, represented by the red and orange bar. 

5.3. Non-Linear Automatic Solution 

Consider the Equation (2-23) if the contact load is known a priori, the contact 

width could be simply computed. However, if the contact load is not known, such as the 

case with a displacement boundary condition an iterative solution must be used. If you 

consider the Hertz problem cases shown in Figure 2-2, the vertical displacement is not 

linearly proportional to the normal contact force. Even if a force boundary condition is 

used, the problem remains inherently non-linear as the contact width is not linearly 

proportional to the normal contact force. Thus, solving contact problems even with 

small-strain theory requires a Newton-Raphson iterative solution. Here the global 
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stiffness matrix [𝐾] is used as the tangent stiffness matrix for each step, but only the 

contact stiffness [𝐾𝑐] contribution will change. Between iterations only the contact 

widths 𝑎 and 𝑐 will change which effects only the stiffness and delta force within the 

contact elements [𝐾𝑐]. 

The general form for automatic solution of non-linear finite element equations is 

given by [24] as:  

[𝐾]𝑖−1
𝑡 {Δ𝑈}𝑖 = {𝑅}

𝑡 − {𝐹}𝑖−1
𝑡  

 
(5-11) 

Where [𝐾]𝑖−1
𝑡  is the tangent stiffness matrix for the current load step 𝑡 at the current 

iteration 𝑖. The value {𝑅}𝑡 is the external load at the current load step. {𝐹}𝑖−1
𝑡  is the 

internal force and {Δ𝑈}𝑖 is the displacement vector which is solved for in each iteration. 

The solution procedure can be thought of as two nested loops, one which increases the 

externally applied load (load step), and the other which finds the correct solution for a 

given load step. A correct solution is obtained when {Δ𝑈}𝑖 is driven too zero, or rather 

the internal force correctly balances the externally applied load. The difference in these 

loads {𝑅}𝑡 − {𝐹}𝑖−1
𝑡  is known as the residual. 

The externally applied load {𝑅}𝑡 is the result of implicit and explicit boundary 

conditions applied to the model. While {𝐹}𝑖−1
𝑡  is the internal force which is the sum 

reactions of all the elements and the contact forces including any friction interactions. 

The final solution {𝑈}𝑖 is updated each iteration as: 

{𝑈}𝑖
𝑡 = {𝑈}𝑖−1

𝑡 + {Δ𝑈}𝑖
𝑡 

 
(5-12) 

In each load step, the externally applied load is increased. If the load applied is linear, 

the externally applied load is equal to: 

{𝑅}𝑡 = 𝜆𝑡{𝑅} 
 

(5-13) 
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Where {𝑅} is the total externally applied load. Multiple schemes have been proposed for 

updating 𝜆 between load steps. The simplest is a fixed step method which simply 

increments 𝜆 by a fixed amount until 𝜆 = 1. One alternative method is the constant work 

approach which uses the solution {Δ𝑈}𝑖
𝑡 to help determine how much to increment 𝜆 by; 

this constant work approach is explained in [5] Convergence must be achieved at each 

load step; this point is determined by the convergence criteria. This criterion must 

incorporate both the displacements and the residual load. To this effect, a tolerance 

based on the ratio of the residual work done has been proposed as: 

{Δ𝑈}𝑖
𝑡(𝜆𝑖

𝑡{𝑅} − {𝐹}𝑖
𝑡)

{Δ𝑈}𝑖
𝑟(𝜆𝑖

𝑟{𝑅} − {𝐹}𝑖
𝑟)
≤ 𝑇𝑂𝐿 

 

(5-14) 

The numerator is the current iteration’s residual work done, while the numerator is the 

reference residual work. The reference is initially the first computed value, after that 

point, the reference is updated after each iteration if {Δ𝑈}𝑖
𝑡(𝜆𝑖

𝑡{𝑅} − {𝐹}𝑖
𝑡 > {Δ𝑈}𝑖

𝑟(𝜆𝑖
𝑟{𝑅} −

{𝐹}𝑖
𝑟). For results in the present work, a tolerance over 10−10 was always used. 

 The tangent stiffness matrix [𝐾]𝑖
𝑡 is approximated as the stiffness matrix of the 

analysis for a Full Newton-Raphson iteration scheme with this matrix being updated 

each iteration. This is compared to the modified Full Newton-Raphson scheme, which 

only updates the tangent stiffness matrix after each step. For the present analysis, the 

Full Newton-Raphson method was always used; this is due primarily to the constantly 

changing contact stiffness [𝐾𝑐] which depends on the contact width. Thus in order to 

achieve convergence within a particular load step, this stiffness must constantly be 

updated to allow for a correct search of penetration and tension points. Further work to 

identify a better tangent stiffness matrix for the changing contact stiffness may increase 

convergence speed and accuracy.  
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5.4. Frictional Contact  

Determining the contact width ratio can be done using the analytical result from 

Equations (2-29) and (2-30) by knowing the net contact force ratio being transferred 

through the contact region. To determine this ratio, the net forces transferred through 

the contact elements must be computed relative to the contact direction. The contact 

direction is simply the normal vector at the contact point. In other words, the normal 

force and tangential force for the contact must be computed, and thus the ratio 

determined. Consider a single contact element’s assembly as: 

[𝑘𝑐]{𝑥𝑒} = { 𝑓} + {∆𝑓} 
(5-15) 

{𝑓} = [𝑘𝑐]{𝑥𝑒} − {∆𝑓} 
 

(5-16) 

Where the external load is split into { 𝑓} and the delta force {∆𝑓} which have 

approximate relative magnitudes of ∆𝑓 ≈ 1011, 𝑓 ≈ 108 this large magnitude difference 

leads to numerical error, making the value { 𝑓} unrecoverable and thus, Equation (5-16) 

is not valid. This load { 𝑓} summed across the contact elements yields the net load 

transferred through the contact. In order to compute { 𝑓} the solution must be found 

neglecting the contribution from {∆𝑓} to accomplish this the modified solution {�̅�} must 

be found via: 

{𝐾𝐶 + 𝐾𝐸}{�̅�} = {𝐹} 
 

(5-17) 

Where {𝐹} no longer contains any contribution from the delta force. Which can be 

assembled into the individual element displacements {𝑥𝑒̅̅ ̅}. This value is used to find the 

elements' net force due to the contact and is found from: 

{𝑓} = [𝑘𝑐]{𝑥𝑒}̅̅ ̅̅  
 

(5-18) 

These are summed to find the net contact force as: 
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{𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡} = ∑[𝑘𝑐]𝑖{𝑥𝑒}̅̅ ̅̅ 𝑖

𝑁𝐶𝐸

𝑖=0

 

 

(5-19) 

However, {𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡} will be in terms of global coordinates; this must be converted to the 

local contact direction by using the normal of the contact point. This yields the normal 

and tangential forces transferred through the contact region. The ratio 𝛽 of these 

defined in Equation (2-27) yields the contact width ratio 
𝑐

𝑎
 knowing the coefficient of 

friction. 

5.4.1. Tied Formulation 

Within the tied region, the contact is considered bonded, which is enforced by the 

contact solution Equation (5-4). Within this region, the boundaries of the parts in contact 

are enforced to stay together, no matter the direction. Applying the same treatment from 

the fully fixed essential boundary condition, 𝐻𝑖𝑗 is constructed as: 

𝐻𝑖𝑗
𝐿 = [

H(𝜙)

H(𝜙)
]   →     𝐻𝑖𝑗 = 𝑅𝑗𝑖𝐻𝑖𝑗

𝐿𝑅𝑖𝑗 = 𝐻𝑖𝑗
𝐿  (5-20) 

 

[𝜕𝐻]  =

[
 
 
 
 
 
 
𝜕𝐻11
𝜕𝑥

𝜕𝐻22
𝜕𝑦

𝜕𝐻11
𝜕𝑦

𝜕𝐻22
𝜕𝑥 ]

 
 
 
 
 
 

  

 

(5-21) 

Within a region defined as tied the friction coefficient can be thought of as infinite 

since a bonded contact will always be enforced. For a partial slip problem, there is a 

known tied region that doesn’t slip; in this region, the shear force transferred is not 

limited by the maximum friction force. So, the use of this tied assumption for this region 

correctly maintains the required tangential force transfer within this region. 
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5.4.2. Sliding Formulation 

In the sliding region, the shear stress due to friction is limited by the definition of 

friction: 𝜏 = 𝜇σn. Therefore, a partial slip region develops, this is because friction 

between the parts is not sufficient to keep them tied within this region. 

𝐻𝑖𝑗
𝐿 = [

1
H(𝜙)

]  →    𝐻𝑖𝑗 = 𝑅𝑗𝑖𝐻𝑖𝑗
𝐿𝑅𝑖𝑗 

(5-22) 

[𝜕𝐻]  =

[
 
 
 
 
 
 

𝜕𝐻11
𝜕𝑥

𝜕𝐻12
𝜕𝑥

𝜕𝐻21
𝜕𝑦

𝜕𝐻22
𝜕𝑦

𝜕𝐻11
𝜕𝑦

+
𝜕𝐻21
𝜕𝑥

𝜕𝐻22
𝜕𝑥

+
𝜕𝐻12
𝜕𝑦 ]

 
 
 
 
 
 

 

 

(5-23) 

By allowing the local tangential direction to slide, the contact is now only bonded 

in the normal direction between the parts. If frictionless contact is considered, the entire 

region will use the sliding formulation and thus be restricted only to not penetrate each 

other while still allowing relative sliding. An example of frictionless contact is given in 

Chapter 6. If the friction coefficient is non-zero, an internal force between the bodies will 

occur; thus, a frictional force must be added as: 

{Ff} = ∑∫ [�̅�]𝑇𝑡 𝑑𝑆
𝜕ℬ

𝑁𝐶𝐸

𝑖=0

= ∑∫ [�̅�]𝑇 {�̂�𝑡} 𝜎𝑛𝜇 𝑑𝑆
𝜕ℬ

    

𝑁𝐶𝐸

𝑖=0

    𝜎𝑛 = �̂�𝜎�̂� 

 

(5-24) 

In the present project, this extra friction force within the sliding region is neglected, 

relying on the tied region to enforce the required tangential force between the parts in 

partial-slip contact. This assumption was made to eliminate numerical issues found 

while computing the additional force {Ff}.  

5.5. Contact Width Growth 

Since the contact width is not known a priori, an iterative method that works with 

the non-linear solver is used to find the correct contact width. For contact, there are two 
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required conditions: 1) no penetration between the parts and 2) no tensile stress 

between two regions in contact. The first is common among all contact problems, but 

the second assumes that the contact is completely non-adhesive. In reality, there will 

exist van der Waals forces between the surfaces in contact, which allows some tensile 

stress between the contact. This is known as adhesive contact [25] and it is not 

represented in the present work or within Hertzian theory. 

Within each contact element, there is potential for the boundary to be in tied, 

relative sliding, or not in contact. Using the cord length from the contact point these 

boundaries can be identified within each contact element. The no contact region 

becomes important for detecting penetration. With this formulation, for each point on the 

boundary of 𝑃1 there is a constant matching point on the boundary of 𝑃2 based on the 

cord length. The difference between these points equal to Δ⃗⃗ . When partial slip is 

considered, there is a relative displacement within the sliding region between two points 

that originally came into contact. This relative sliding is allowed by the formulation of 

[𝐻], which enforces Δ⃗⃗  only in the normal direction. The use of the cord length 

approximates the arc length as such for progressively larger deformations; this 

assumption becomes less and less accurate. It is assumed that for small displacements 

and thus small contact regions, the difference is negligible. 
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5.5.1. Enforcing No Penetration 

 

Figure 5-4. Determination if a point on Part 1 is penetrating Part 2. 

 
If two regions are considered in contact, Equation (5-4) enforces in this region 

that there is no penetration between the two parts. However, consider that the contact 

width 𝑎 has been underestimated. In this case the contact forces are still being fully 

transmitted through the region, but penetration will occur between the two parts outside 

of the known contact region. Of course, penetration is a violation of the contact 

conditions meaning the contact width needs to be increased. To detect this penetration 

within the contact elements, the no-contact region is searched to find points that 

penetrate between the two parts. This search is performed following an iteration of the 

non-linear solution structure. Each penetrated point found increments a penetration 

counter. To find if two points are penetrating each other, consider Figure 5-4 and the 

displacement between the two points that can come into contact 𝜉. This gives a 

penetration condition when: 

𝜉 ∙ Δ⃗⃗ < 0 
(5-25) 
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This is to say that if the displacement between the two points 𝜉 are in the same direction 

as Δ⃗⃗  there is no penetration.  

5.5.2. Enforcing No Tensile Stress 

There also exists the problem of overestimating the contact width, which affects 

the final force distribution through the contact, and produces unrealistic results. To 

detect if the contact width is overestimated, a search for normal tensile forces is 

performed within the contact region. If normal tensile stress is found between the parts 

(positive), this is an indication that these points want to pull apart from each other, thus 

a need for reducing the overall contact width. The normal stress is computed along the 

boundary as: 

𝜎𝑛 = �⃗� ∙ 𝜎 ∙ �⃗�  
(5-26) 

For any points within the contact region where tensile normal stresses are found, a 

tension point counter is incremented. Unlike penetration, which is based on 

displacement alone, the search for tension points depends on the secondary quantity of 

normal stress. This means that during iterations, when the correct solution is still 

unknown fictitious tensile points can occur.  

5.5.3. Incrementing the Contact Width 

An initial contact width increment is selected relative to the size of the mesh 

elements. This increment is reduced in the event of oscillations while iterating the 

contact width, this allows each iteration to take progressively smaller steps once a value 

close to the contact width is achieved. After each iteration, both the penetration and 

tensile stresses are checked within their respective regions. Resulting in a count of 

detected penetration points and detected tension points. These counts are then used to 

determine how the contact width should be updated. If no tensile or penetration points 
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are found, the contact width isn’t updated. If there are only tensile points, the contact is 

decreased; similarly, if only penetrations points are found, the contact width is 

incremented. If both tensile and penetrations points are detected, the width is 

incremented by a smaller amount using the larger count to determine whether the 

contact half-width 𝑎 should be incremented or decremented. Logically there should only 

ever be tension or penetrations points, but due to numerical error and uncertainty in the 

answer between steps, often some tension points might be found. However, penetration 

which is based on displacement is the driving force of change in the contact width, 

which is expected as the load is increased each step. Thus, the tension points can be 

thought of more as preventing overshooting in the solution for the half-width 𝑎. 

5.5.4. Determining the Width Increment 

The amount the half-width 𝑎 is incremented and decremented is crucial to the 

convergence of the problem. Consider an increment ∆𝑎 which is used to update the 

half-width 𝑎 each iteration. If the increment is too small (i.e., less than 4% of the final 

half-width), the solution time increases since more iterations are required; these extra 

iterations occur just due to the limited size of ∆𝑎 as they must each increment 𝑎 to 

eventually find the correct value. The opposite problem is to pick a value of ∆𝑎, which is 

too large; this can cause constant oscillations between incrementing 𝑎 or decrementing 

𝑎. To alleviate these issues, ∆𝑎 is updated each iteration based on multiple criteria. The 

most important is detecting oscillations while converging to a solution; this means the 

half-width 𝑎 goes back and forth, increasing and decreasing, unable to reach the correct 

contact width. This can be detected by monitoring the sign of ∆𝑎 between iterations and 

whenever there is a switch decreasing the magnitude of ∆𝑎 by a set factor 𝜂 as: 
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∆𝑎 = 𝜂∆𝑎 
 

(5-27) 

For the present analysis, a factor of 𝜂 = 0.5 is used. The smaller increment 

∆𝑎 progressively cuts out oscillations by allowing it to find a solution that would 

otherwise be forever skipped back and forth over. In other cases, an increase of ∆𝑎 can 

reduce the number of iterations needed. To this effect, when only penetration points are 

detected ∆𝑎 is increased by a factor of 𝜂 = 1.05. This allows the contact half-width 𝑎 to 

jump faster toward the correct solution. At the start of each load step, the contact width 

increment ∆𝑎 is reset back to its initial value. This initial value is determined by the initial 

size of the mesh used. If a sufficiently small increment value ∆𝑎 is used, then there is no 

need to update ∆𝑎; however, this comes at the expense of extremely slow convergence 

and is not practical. Likewise, the opposite issue of having a set value of ∆𝑎 that is too 

large limits the possible accuracy and can prevent convergence. 
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CHAPTER 6 
6. RESULTS 

6.1.  Effect of Projected Geometry on an Ellipse in Contact 

This example examines the effects and needs for the projection algorithm 

introduced in Chapter 4. Here a half-ellipse on a block under point contact is analyzed 

as shown in Figure 6-1; a vertical displacement of −0.1𝑚𝑚 is specified on the top of the 

half-ellipse, while the bottom boundary is specified to be fixed reactions. Both parts are 

elastically similar, with a Young’s modulus of 2 ∗ 1011 Pa and Poisson’s ratio of 0.3. 

 
Figure 6-1. Boundary conditions for ellipse on plane contact. 

The need for geometric accuracy for surface integration became very apparent 

while including contact analysis within IBFEM. While geometry with small inaccuracies 

will often still converge to a result, these results are considerably worse and do not 

match the analytical solution. Consider the Von Mises stress results shown in Figure 

6-2, where (a) integration points are projected on accurate geometry (projected results) 

and (b) is the result without projection of integration points on accurate geometry (non-

projected results). In (b), one can identify a lack of symmetry and large stress risers on 
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the contact surface. Iterations also took significantly longer for the non-projected result 

suggesting numerical issues from the approximate surface. 

 
 

 
 

Figure 6-2. Comparison of the Von Mises stress plot between (a) projected and (b) non-
project results. The only difference between simulations and results is the 
addition of the ellipse projection algorithm. 

6.1.1. Comparison of Contact Width 

An analytical solution for the contact half-width 𝑎 can be determined from 

Equation (2-23), knowing the composite modulus 𝐸∗ and composite radius 𝑅∗ one can 

determine 𝑎. For an ellipse the curvature is no longer constant thus, its curvature 𝜅 can 

(a) 

(b) 
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be computed for a point on the surface defined by the parametric coordinate 𝜃. For an 

ellipse defined by semi-major axis 𝑎 and semi-minor axis 𝑏 the curvature is given by: 

𝜅𝑒𝑙𝑙𝑖𝑝𝑠𝑒  =
𝑎𝑏

√𝑎2 sin2 𝜃 + 𝑏2 sin2 𝜃
  

 

(6-1) 

𝑅𝑒𝑙𝑙𝑖𝑝𝑠𝑒(𝜃)  =
1

𝜅
  

 

(6-2) 

 

For the location of the contact point (𝜃 =
𝜋

2
) on the ellipse, the radius is 𝑅1 = 0.1. 

For the bottom block, the radius is considered infinite giving: 𝑅2 ≅  ∞. This gives 

composite values for this contact problem as 𝑅∗ = 0.1 and 𝐸∗ = 1.10E + 11. Using 

Equation (2-23) and the final applied load 𝑁 the analytical solution to contact half-width 

is given as 2.47 𝑚𝑚. The results found for the contact half-width are compared below: 

Table 6-1.  Contact Half-Width comparison for Example 1. 
 Analytical 

Solution 
Projected Results Non-Projected 

Results 

Contact Half-Width 𝑎 [mm] 2.47 2.399 1.694 
Percent Error  2.88% 31.4% 

 
While the non-projected results are within an order of magnitude of the expected 

solution, the projected solution results in a much lower error as well as faster 

convergence, and the projected results have a faster solution time even considering it 

has to perform an iterative search on an ellipse each time an integration point is 

projected. 

6.1.2. Comparison of Contact Pressure 

Using the computed contact width 𝑎, and the known externally applied normal 

load reaction, the contact pressure distribution will take on the elliptical distribution from 

Equation (2-19). This is compared to the IBFEM results for the pressure within the 

contact region in Figure 6-3. It can be seen the non-projected results do not reflect the 
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expected distribution, while the projected solution matches very well. The peak pressure 

𝑃0 can be computed using total rection force from the fixed displacement condition via 

Equation (2-20). 

 

Figure 6-3. Contact pressure distribution using both the IBFEM method with projection 
and without projection compared to the analytical solution. 

 
6.1.3. Comparison of Sub Surface Von Mises Stress 

Numerical solutions have been computed for ellipse-on-ellipse contact. For line 

contact, such as the current case, the peak Von Mises Stress is found to be 0.558𝑃0 

with a vertical location of 0.703a [26]. The sub-surface Von Mises Stress plots are 

compared for both the projected and non-projected results. The numerical peak stress 

and location computed in [26] are also included for comparison. The projected solution 

closely matches the peak stress and location. The projected solution also lacks the 

surface singularity which is found in the non-projected result. However, the non-

projected results still yield semi-accurate results away from the contact point. 
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Figure 6-4. Subsurface Von Mises stress along the vertical axis from the contact point. 

6.1.4. Displacement results 

The displacement magnitude is shown for the projected result in Figure 6-5 and 

the non-projected results in Figure 6-6. Within the contact region, the project result 

displacements are continuous, which is the expected result for Hertzian contact; 

however, for the non-projected results, an asymmetry appears with what looks like 

contact only on the left side. It may be noted in both cases, the same contact point was 

used, along with the same mesh. A possible source of asymmetry in the non-projected 

solution could arise from an imbalance in numeracy and position of the line segments 

used to approximate the surface. An even worse case arises when the contact point is 

in the middle of one of these approximate line segments instead of a vertex, thus 

making it hard to identify if the problem is point contact. 
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Figure 6-5. Projected result displacement magnitude. 

 
Figure 6-6. Non-projected result displacement magnitude. 
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6.2. Mesh Independent Convergence of Contact Width  

For a contact analysis program to be reliable there needs to be consistent results 

across differing load and mesh conditions. There is also the expectation that the results 

are independent of the mesh used. To this effect, using the same geometry, various 

differing normal load boundary conditions are applied and compared to the analytical 

result. The error in contact width is also examined over progressively finer meshes. For 

this analysis, two elastically similar materials are used with a Young’s modulus of 2 ∗

1011 Pa and Poisson’s ratio of 0.3. The load is applied via a fixed displacement 

boundary condition, as shown in Figure 6-7.  

 

Figure 6-7. Boundary conditions for mesh independent convergence analysis. The 
bottom part is fixed at the bottom, while the top part has a specified 
displacement.  

6.2.1. Comparison of Half-Width for Differing Loads  

The non-linear nature of the relationship between the load applied and the 

contact width is given by Equation (2-23). This analytical solution depends on the 

geometry curvature and elastic constants. The IBFEM solution uses the identification of 

penetration and tension points to determine the contact width. These are compared 
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across multiple analyses where only the vertical displacement is varied, and the mesh is 

kept the same. For each vertical displacement, there is a corresponding reaction normal 

load; these analyses are compared in Figure 6-8. As can be seen, the IBFEM result 

closely matches the analytical expectation for half-width across various applied 

displacements.  

 

 
Figure 6-8. Contact half-width computed during eight different analyses while using the 

same mesh density (25 contact elements). Only the normal load boundary 
condition was varied between analyses. This is compared to the analytical 
contact half-width from (2-23) 

6.2.2. Error In Contact Width Across Differing Meshes 

Using the same geometry and boundary conditions, multiple analyses were run. 

Between each analysis, only the mesh density was varied. The results of this can be 

seen in Figure 6-9; one can observe with an increase in mesh density, the error in 

contact width progressively reduces until it oscillates around the true answer with an 

error bounded by 3% for fine meshes. In this case, the number of elements used refers 

to the number of contact elements and not the total number of elements in the mesh. An 

example of a course and dense mesh used for the analysis is shown in Figure 6-10. 
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Figure 6-9. Error in contact half-width compared across increasing mesh density. The 

same boundary conditions were used for all analyses with only the 
background mesh was modified 

 
(a) 

 
(b) 

Figure 6-10. Comparison of mesh densities: (a) Course mesh containing ~5 contact 
elements (b) Fine mesh containing ~30 contact elements 

6.3. Frictionless Contact 

In frictionless contact, no tangential forces are transferred between the surfaces 

in contact. This means only pressure between parts in contact will be transferred. This 

is tested using cylinder-on-cylinder contact where a fixed vertical and horizontal 

boundary condition is specified; this is shown in Figure 6-11. The expected result is a 

stress distribution identical to Hertzian contact theory while allowing the specified 

displacement in a tangential direction without any resistance; thus, in this case, there is 

no tied region instead only a sliding region. Frictionless contact is a purely 
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manufactured concept; however, this example helps validate the allowance for sliding 

within the new contact formulation. Frictionless contact is also available in many FEM 

applications [16]. 

 

Figure 6-11. Cylinder-on-Cylinder boundary conditions. Both vertical and horizontal 
displacements are specified. The contact is frictionless with 𝜇 = 0. 

6.3.1. Contact Width Comparison 

The resulting reaction on the top boundary was found as [𝐹𝑥 𝐹𝑦] =

[−1.30 ∗ 106 −7.49 ∗ 108] which is equal and opposite to the bottom boundary. For 

cylinder-on-cylinder contact of elastically similar materials, the expected contact region 

is a flat line. In this case, this is along the x-axis; thus, for frictionless contact, one would 

expect 𝐹𝑥 = 0. Consider an estimate of the expected friction if it was included as 𝜇𝐹𝑦 =

0.3𝐹𝑦 = 1.5 ∗ 10
8. This force is two orders of magnitude larger than the found value of 

𝐹𝑥; thus, making it a numerical error most possibly due to the found contact width not 

being truly flat.  

The analytical solution for the half-width can be found similarly according to 

Equation (2-23). Using the composite modulus and radius, which for this problem is 

given as 𝑅∗ = 0.5 𝑚 and 𝐸∗ = 1.1 ∗ 1011 Pa. Which corresponds to an analytical half-
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width of 0.06589 𝑚. The half-width found from the analysis was found to be  0.0667 𝑚 

this results in a 1.37% error when compared to the analytical solution.  

6.3.2. Displacement Results 

The vertical and horizontal displacements are shown in Figure 6-12 it can be 

seen the displacements are continuous through the contact in the Y-direction while they 

are discontinuous in the X-direction. This is the expected result as without friction, there 

is no forces restricting movement in a tangential direction of the contact surface, which 

in this orientation is along the X-direction. The displacement in the Y-direction is the 

same results expected for purely Hertzian normal pressure contact, while the 

displacements in the X-direction are the fixed displacement plus Poisson effects from 

the contact.  

 
(a) Y-Displacement 

 
(b) X-Displacement 

 
Figure 6-12. The components of displacement for frictionless contact (a) the 

displacement in the Y direction and (b) the displacement in the x-direction. 
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6.3.3. Von Mises’ Stress Field 

The Von Mises Stress is shown in Figure 6-13; the results are symmetrical in 

both the vertical and horizontal directions; this is because no meaningful force was 

transmitted in the tangential direction. This is the expected result for Hertzian contact, 

similar to the distribution shown in Example one. Thus, the fixed displacement in the 

horizontal direction (x-direction) has no effect on the final stress field. This is the 

expected result for frictionless contact as there should be no other resistance between 

the parts in contact other than normal forces transferred between them. 

 
 

 
𝜎𝑣𝑚 [𝑃𝑎]   

 
Figure 6-13. Von Mises Stress for Frictionless contact. This result is expected to match 

the Hertzian normal force only Von Mises contour plot. 
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6.4. Partial-Slip: Cylinder on Flat 

Now partial slip is considered between a cylinder and a block, as shown in Figure 

6-14. The coefficient of friction between the surfaces is 0.3 and both parts are elastically 

similar with a Young’s modulus of 2 ∗ 1011 Pa and Poisson’s ratio of 0.3. A fixed 

displacement in both the vertical and horizontal direction is specified for the top 

boundary, while the bottom boundary is fixed. 

 
Figure 6-14. Cylinder-on-Flat plane boundary conditions. Both vertical and horizontal 

displacement is applied along the top boundary. 

6.4.1. Contact Width and Ratio Comparison 

From the specified displacement, the resulting reaction force, which is equal and 

opposite to the bottom fixed reaction, is [𝐹𝑥 𝐹𝑦] = [−5.55 ∗ 107 −5.22 ∗ 108]. Due to the 

contact being along the Y-direction, the relation [𝐹𝑥 𝐹𝑦] = [𝑄 𝑁] can be made. 

Knowing the composite radius and modulus for this problem which is computed as 𝑅∗ =

1 𝑚 and 𝐸∗ = 1.1 ∗ 1011 the analytical half-width 𝑎 can be determined from Equation 

(2-20). The analytical result for the contact ratio can be found knowing the ratio of shear 

force 𝑄 to the normal force 𝑁 and the coefficient of friction between the parts from 
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Equation (2-29). Here, the contact force ratio 
𝑄

𝑁
 is 0.106 which corresponds to contact 

width ratio of 0.804. These results are compared in the table below. 

Table 6-2.  Contact half-width and ratio comparison for Example 4. 
 Contact Width 𝑎 [m] Contact Ratio 𝑐/𝑎 

Analytical Solution 0.07777 0.803669 
IBFEM Result 0.07818 0.801898 
Percent Error 0.52% 0.22% 

 
The resulting widths are very accurate to the analytical solution, with a relative error 

under one percent. 

6.4.2. Contact Region Shear Stress 

The shear stress along the contact surface is plotted in Figure 6-15 along with 

the analytical result, which is given by Equation (2-25). The x-axis is normalized by the 

half-width 𝑎. As can be seen, the IBFEM results are overestimated compared to the 

analytical result. This error could be attributed to not plotting along the exact region of 

contact.  

 
Figure 6-15. Shear Stress through the contact half-width compared to the analytical 

result. Only half of the geometries' contact width is plotted. 
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6.4.3. Contact Region Normal Stress 

The expected contact pressure or normal stress distribution should be the same 

elliptical one defined for Hertzian contact. The pressure distribution at the contact region 

is given by Equation (2-19) and depends only on the contact half-width 𝑎 and total 

normal force 𝑁 transferred through the contact. This analytical result is compared to the 

IBFEM result in Figure 6-16, which is normalized by the peak contact stress 𝑃0 =

4.25𝐸9 𝑃𝑎 and the contact half-width 𝑎. 

 
Figure 6-16. The Normal Stress plotted through the contact region. 

As can be seen from Figure 6-16 the IBFEM analysis results in a close match to 

the analytical solution. Unlike the shear plot, the normal pressure is less sensitive to 

ensuring your plot is directly along the contact boundary, which helps with accuracy 

while comparing.  

6.4.4. Von Mises Results 

The Von Mises Stress distribution is shown in Figure 6-17; the key difference that 

can be observed from the preceding examples is the tilt in the location of the peak Von 

Mises stress. This is exemplified in (b), where a vertical line is drawn to show this tilt.  
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(a) 

(b) 

 

 

 

𝜎𝑣𝑚 [𝑃𝑎]   

Figure 6-17. Von Mises’ Stress field for cylinder-on-flat contact under partial slip. (a) Full 
result view (b) Zoomed, contact region result view 

The full analytical stress field cannot be readily computed and compared for 

partial-slip problems [14]. However, consider Figure 6-18 reproduced from the results of 

a physical experiment that used photoelasticity to show the true stress field. 

Photoelasticity is an experimental method which makes use of birefringence properties 

of some materials (ie. Plastics and glass) to visualize the stress field. When these 
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materials undergo stress light passing through is doubly refracted in two directions 

along the principal axis of stress thus allowing for the identification of the maximum 

shear stress [27]. Qualitatively Figure 6-18 can be compared regarding the expected 

stress contour shape however the tilt angle is dependent on boundary conditions. 

 
 

Figure 6-18. "Stresses produced by a contact with a combined normal and tangential 
load made visible by polarization optics” courtesy of Valentin Popov, who 
released this image into the public domain [17]. 

 
6.5. Partial-Slip: Cylinder on Cylinder 

Partial slip is now considered between two cylinders, as shown in Figure 6-19; 

these boundary conditions are similar to the frictionless example, except now partial-slip 

with friction is considered between the parts. The top boundary has a specified vertical 

and horizontal displacement, while the bottom boundary is fixed. The coefficient of 

friction between the surfaces is 0.3, and both parts are elastically similar with a Young’s 

modulus of 2 ∗ 1011 Pa and Poisson’s ratio of 0.3. 
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Figure 6-19. Boundary conditions for Cylinder-on-Cylinder contact under partial-slip. 

 
6.5.1. Contact Width and Ratio Comparison 

The analytical half-width 𝑎 can be computed the same as the frictionless 

example. Knowing the composite radius and modulus given for this example as 𝑅∗ =

0.5 𝑚 and 𝐸∗ = 1.1 ∗ 1011 𝑃𝑎. The analytical contact ratio can be computed knowing the 

reactions on the top boundary, which was found from the analysis as: [𝐹𝑥 𝐹𝑦] =

[8.69 × 107 −7.50 × 108]. This gives a contact force ratio of 0.116, from which the 

analytical contact ratio can be found from Equation (2-29). The analytical contact half-

width and ratio are compared to the IBFEM results in the table below. It can be seen 

that the IBFEM matches very closely with the analytical solution. 

Table 6-3.  Contact half-width and ratio comparison for Example 5 Cylinder-on-Cylinder 
contact. 

 Contact Half-Width 𝑎 [m] Contact Ratio 𝑐/𝑎 

Analytical Solution 0.06593 0.78342 
IBFEM Result 0.06523068 0.792036 
Percent Error 1.06% -1.10% 
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6.5.2. Contact Region Normal Stress 

The contact normal stress through the contact region is plotted in Figure 6-20 

and compared to the analytical solution given by Equation (2-19). The y-axis is 

normalized by the peak pressure 𝑃0 = 7.25 ∗ 10
9 𝑃𝑎 while the x-axis is normalized by 

the contact half-width 𝑎.  

 
Figure 6-20. Normal stress through the contact region for Cylinder-on-Cylinder contact  

The result matches very well; however, some error can be accounted for by the 

fact this plot is not exactly along the contact surface. Instead, to achieve this, a plot 

needs to be made which follows along the surface, in this case, the circle. Thus, error in 

the region being plotted will get worse away from the contact region. This is compared 

to examples that have a plane where it is much easier to plot along the boundary since 

it is a straight line. 

6.5.3. Stress Fields 

The Von Mises field is shown in Figure 6-21, which can be compared roughly to 

the photoelasticity results shown in Figure 6-18. Note here the change in tilt direction is 

due to the tangential force being applied in the opposite direction compared to Example 
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4. The normal stress in the y-direction 𝜎𝑦𝑦 field is shown in Figure 6-22 which on the 

contact region is effectively the normal stress between the parts or rather the pressure 

between them. It is this value this is plotted and compared in Figure 6-20 for the contact 

pressure. As can be observed 𝜎𝑦𝑦 is symetric about both axis at the contact point, this is 

the expected result for herztian contact. Finally the shear stress field 𝜎𝑥𝑦 field is plotted 

in Figure 6-23. 

 
Figure 6-21. Von Mises’ Stress for Cylinder-on-Cylinder contact with normal and 

tangential load 
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Figure 6-22. 𝜎𝑦𝑦 stress field for Cylinder-on-Cylinder contact with normal and tangential 

load. 

 
Figure 6-23. 𝜎𝑥𝑦 stress field for Cylinder-on-Cylinder contact with normal and tangential 

load. 
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6.5.4. Displacement results 

The x-component of displacement is shown in Figure 6-24; as can be seen, 

these values are now continuous through the contact region (at least within the tied 

region). This can be compared to the frictionless example where the displacements are 

not continuous. Note the geometry is such the x-axis is along the tangent of the contact 

point. The y-component of displacement is shown in Figure 6-25, where it can be 

observed the displacements are continuous through the contact region and follow a 

pattern like traditional Hertzian contact. This result can be compared to the frictionless 

example as shown in Figure 6-12, where a now a small tilt in the y-component contours 

of displacement can be observed. 

 
Figure 6-24. 𝑢𝑥 displacement field for cylinder-on-cylinder point contact. 
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Figure 6-25. 𝑢𝑦 displacement field for cylinder-on-cylinder point contact 

6.6. Partial-Slip: Cylinder on Concave 

In this example, now a concave partial slip condition is considered between 

elastically similar parts with a Young’s modulus of 2 ∗ 1011 Pa and Poisson’s ratio of 0.3. 

The boundary conditions for this example are shown below in Figure 6-26; a fixed 

horizontal and vertical displacement of −8𝑚𝑚 and 0.5𝑚𝑚 respectively is specified for 

the top boundary. The bottom boundary is fixed in place. The contact is applied to the 

top curve with a friction coefficient of 𝜇 = 0.3 as shown in blue. 
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Figure 6-26. Boundary conditions for Cylinder-on-Concave. Both vertical and horizontal 

displacements are applied to the top boundary. 

6.6.1. Contact Width and Ratio Comparison 

The analytical half-width 𝑎 can be computed like the other examples now 

accounting for the concave surface, which simply takes the form of a negative number 

as 𝑅2 = −2𝑚. The top circle has a radius of one, giving 𝑅1 = 1𝑚. From Equation (2-22), 

the composite radius is computed as 𝑅∗ = 2m. From the parts elastic constants the 

composite modulus is computed from Equation (2-21) to be 𝐸∗ = 1.10 ∗ 1011. This gives 

an analytical solution for the contact width from Equation (2-23) as 0.103 m. For cylinder 

on concave contact as the curvature of the two circles become equal in magnitude, the 

contact width gets larger and larger until they are fully in contact; in such a case, 

Equation (2-23) no longer holds as 𝑅∗ becomes undefined. The force through the 

contact was found from the reactions as [𝐹𝑥 𝐹𝑦] = [𝑄 𝑁] = [1.72 ∗ 107 4.63 ∗ 108] 

which gives a load ratio of 0.037. From Equation (2-29) the contact ratio can be found 

as 0.936. These analytical values are compared to the IBFEM results in the table below. 
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Table 6-4.  Contact half-width and ratio comparison for Example 6. 
 Contact Half-Width 𝑎 [m] Contact Ratio 𝑐/𝑎 

Analytical Solution 0.10363 0.936093 
IBFEM Result 0.099976 0.935674 
Percent Error 3.53% 0.04% 

 
There is a slight error in the contact width found 𝑎, while almost no error is found for the 

contact ratio suggesting the algorithm to compute the forces transferred to the contact 

elements is accurate. 

6.6.2. Contact Region Shear Stress 

The shear stress is plotted through the contact region in Figure 6-27, which is 

compared to the analytical solution given by Equation (2-25); the x-axis is normalized by 

the contact length 𝑎. As can be seen like other examples the shear stress is 

overestimated compared to the analytical solution, but the general shape is exhibited by 

the IBFEM result. This may be accounted for by plotting along the exact surface. 
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Figure 6-27. Shear Stress through the contact half-width compared to the analytical 
result for Cylinder-on-Concave contact. Only half of the geometries' contact 
width is plotted. 

6.6.3. Contact Region Normal Stress 

The normal stress which is the value 𝜎𝑦𝑦 is plotted through the contact boundary 

in Figure 6-28; the IBFEM results are compared to the analytical solution given by 

Equation (2-19). Some error is associated with plotting as the plot is done along a 

straight line from the point of contact instead of along the actual surface, which in this 

case is curved. 

 
Figure 6-28. Normal Stress plotted through the contact region for Cylinder-on-Concave 

contact 

6.6.4. Stress Fields 

The Von Mises stress is shown in Figure 6-29; a tilt in the location of the peak 

stress is observed. However, compared to the previous examples, a much smaller tilt is 

seen; this is due to a larger contact ratio or a small load ratio. This is the expected result 

because as the load ratio approaches zero, the traditional Hertzian Von Mises stress 

distribution is found; thus, this tilt may be thought of as a function of the contact ratio. 
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The normal stress 𝜎𝑦𝑦 distribution is shown in Figure 6-30 is symmetrical about the 

vertical axis, which is expected. The shear stress 𝜎𝑥𝑦 field is shown in Figure 6-31, here 

one can observe some stress concentrations near the contact surface, these are not 

expected based on the analytical solution, otherwise the stress field matches the 

expected results. 

 
Figure 6-29. Von Mises’ Stress field for Cylinder-on-Concave contact 
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Figure 6-30. 𝜎𝑦𝑦 stress field for Cylinder-on-Concave contact 

 
Figure 6-31. 𝜎𝑥𝑦 stress field for Cylinder-on-Concave contact. 
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6.6.5. Displacement results 

The x-component of displacement is shown in Figure 6-32; as expected, within 

the tied region, the displacement is continuous between the parts. Interestingly the 

largest x-displacement occurred not at the specified displacement but within the part. 

This could be accounted for by the low contact load ratio used for this example, allowing 

the x-direction displacement from Poisson's ratio effects to show up. The y-component 

of displacement is shown in Figure 6-33 and is continuous through the contact region 

with a similar result to other examples and the Hertzian solution. 

 
Figure 6-32. 𝑢𝑥 displacement field for cylinder-on-concave point contact. 
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Figure 6-33. 𝑢𝑦 displacement field for cylinder-on-concave point contact 

6.7. Frictionless Sliding: Cylinder on Wedge 

Consider a cylinder pushed into a wedge as shown in Figure 6-34; here only a 

vertical displacement is specified. However, due to the geometry of the problem at the 

contact point there exists both a vertical and horizontal force with respect to the global 

coordinate system. Since frictionless contact is considered, only a compressive force 

normal to the surface can be transmitted through the contact. There is a symmetry 

condition down the vertical axis as shown, and only half the model is analyzed using the 

IBFEM method. The total forces transmitted can be analyzed by considering the free 

body diagram of the cylinder as shown in Figure 6-35, due to the symmetry of the 

problem these contact points will also be symmetric. Knowing the angle of the contact 

force which can be found from the wedge angle, the contact normal 𝐹𝑛 force component 

and tangential force component 𝐹𝑡.can be found as: 
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𝐹𝑛 = sin(𝜃) 𝐹𝑥 + cos(𝜃) 𝐹𝑦 

 
(6-3) 

𝐹𝑡 = cos(𝜃) 𝐹𝑥 − sin(𝜃) 𝐹𝑦 = 0 

 
(6-4) 

𝐹𝑥 = tan(𝜃) 𝐹𝑦 

 
(6-5) 

 
Figure 6-34. Boundary conditions for Cylinder-on-wedge. Only a vertical displacement 

on the top boundary is specified. 

 
Figure 6-35. Free body diagram of the forces applied to the top cylinder. 
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For this example, the total force applied on the top boundary is 4.144 ∗ 108 N 

which results in an 𝐹𝑥 value of 1.11 ∗ 108 N transmitted at the contact region from 

Equation (6-5). This results in a total normal contact load of 4.29 ∗ 108 N transmitted 

though the contact region. 

6.7.1. Contact Width and Transmitted Force Comparison 

Knowing the total normal load transmitted through the contact, alike previous 

examples, the analytical contact width can be computed using the Hertzian solution. 

Both parts are elastically similar, with a Young’s modulus of 2𝐸11 Pa and Poisson’s 

ratio of 0.3. The composite radius and modulus for this example are 𝑅∗ = 1 𝑚 and 𝐸∗ =

1.1 ∗ 1011 𝑃𝑎 the analytical contact half-width is computed to be 0.071 m using Equation 

(2-23). This result is compared to the IBFEM analysis of 0.074 m which results in a -

4.15% error in contact half-width. This also validates the sliding contact formulation to 

problems when the contact direction is not in line with the global coordinate system (as 

with previous examples). 

6.7.2. Stress Fields 

The Von Mises stress field is shown in Figure 6-36, one can see the interaction 

of the stress field when two-point contacts are considered on the same cylinder. As this 

is frictionless contact the Von Mises plot is expected to have no tilt relative to the 

contact normal direction. The 𝜎𝑦𝑦 and 𝜎𝑥𝑥 stress fields are shown in Figure 6-37, unlike 

other example since the contact normal is not aligned with the global coordinate system 

now 𝜎𝑦𝑦 ≠ 𝜎𝑛. However, a similar elliptical distribution within the contact region is found 

to the other Hertzian problems analyzed. 
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Figure 6-36. Von Misses Stress field for cylinder-on-wedge 

 
(a) (b) 

 
Figure 6-37. (a) 𝜎𝑦𝑦 stress field (b) 𝜎𝑥𝑥 stress field for cylinder-on-wedge contact 
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6.7.3. Displacement results 

The displacement magnitude is shown in Figure 6-38, one can see a similar 

continuous displacement through the contact region as in other examples. Also note the 

top boundary’s specified vertical displacement boundary condition. The components of 

displacement are shown in Figure 6-39 again since the contact is no longer aligned with 

the global coordinate system the displacement along the contact direction is no longer 

the same as 𝑢𝑦 (15 degrees off). Within the plot of 𝑢𝑥 one can see it is not continuous 

between the parts, this is expected for frictional contact since the tangential load is 

generally aligned with the tangent of the contact normal.  

  
Figure 6-38. 𝑢 magnitude displacement field for cylinder-on-wedge point contact. 
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(a) 

 
(b) 

 
Figure 6-39. (a) 𝑢𝑦 displacement field (b) 𝑢𝑥 displacement field for cylinder-on-wedge. 
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CHAPTER 7 
7. CONCLUSION 

7.1. Conclusion 

The motivation behind the present work was to implement sliding contact in the 

form of sliding frictionless contact and for partial-slip contact problems.  

The need for projection on to the exact surface was identified in order to achieve 

accurate solutions; this is highlighted in Example 1 where the results difference between 

the projected and non-projected results are compared. These projection algorithms 

where also written for 3D primitives as covered in Chapter 4 as their importance will 

become crucial to application of this contact solution structure to 3D. 

The new algorithm was implemented for representing and identifying the region 

in contact by the scaler half-width 𝑎. Thus, allowing for iteratively increase and 

decreasing 𝑎 instead of a node-to-node type contact implementation. The accuracy of 

this algorithm is analyzed in Example 2 in both a mesh and load independent way 

resulting in reliable results for the half-width 𝑎 with under 3% error for sufficiently dense 

meshes. This allows for reducing the contact problem in 2D down to the contact point 

and contact half-width 𝑎. 

The sliding contact formulation covered in Chapter 5 allows for unbounded 

movement tangent to the contact surface. This is examined in Example 3 with a 

Hertzian-like problem where a horizonal displacement is specified, this results in an 

expected discontinuity in displacements between the parts while remaining continuous 

in the direction normal to the contact. The sliding contact formulation was further 

extended to partial-slip problems where both a tied and sliding region is considered this 

is compared across Examples 4-6, overall, this formulation proved very accurate 
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regarding the contact width, and contact ratio compared to the analytical solution. The 

pressure distribution also matches very well to the expected Hertzian elliptical pressure 

distribution, however, in all examples the shear stress plotted along the contact surface 

was overestimated compared to the analytical result. However, the total contact forces 

transferred through the contact are accurate for the contact region identified and always 

equal and opposite between the parts. More accurate plotting along the contact region 

could elevate this issue, or the possibility of mesh refinement within these regions. 

Example 7 primarily validates the sliding contact condition even when the normal at the 

contact point is no longer aligned with the global coordinate system. 

Together these examples show that the contact solution structure is reliable for 

sliding and partial-slip problems especially in regards to obtaining a solution to the size 

of the contact region. 

7.2. Future Scope 

There are many areas this work could be extended and improved. The main to 

consider are the extension to 3D, addition of large deformation, and more accurate 

stiffness based on the exact projected geometry, and dynamic/fatigue problems. 

A major improvement would be the application of this algorithm to 3D, this would 

require a more general elliptical contact region represented by two scalers (semi-major 

and minor axis lengths), application of projection algorithms would allow for easy 

identification of the delta vector. 

Large deformation would greatly extend the application of this solution structure; 

this would allow rigid body motion as well as continuously updating the mesh and 

contact elements. This would also eliminate the issues of elements deforming past each 

other. Projection can still be used based to improve accuracy by virtue of knowing the 
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exact undeformed geometry. Self-intersection could be implemented and achieved 

considering contact elements between the same geometry. 

Using mesh refinement would allow for more accurate solutions however 

currently the mesh size is limited to prevent the underlying meshes of the contact 

element from deforming so far such that they are over a different corresponding 

background mesh. Alike adding large deformation to solve this a requirement for re-

searching for contact elements as the non-linear solver progresses. 

The use of exact projection to improve the accuracy of the element stiffness. As 

so far, the exact projection is limited to use on boundary integrals and has not been 

implemented to improve the accuracy of volume integration, this has relevancy to all 

problems within the IBFEM method not only contact problems. More exact stiffness 

integration would have the effect of eliminating stress risers from triangles (or 

tetrahedrons) constructed from the approximate tessellated representation. 

A large area of interest for partial-slip contact is from the fretting phenomena 

which arise from cyclical loading which can cause premature failure rooted within the 

sliding region [12]. 
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